Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Changes in the microstructure and texture with annealing temperature of a nanostructured complex aluminum alloy fabricated by multi-stack Accumulative Roll Bonding (ARB) process using various Al alloys are investigated in detail. The ARB process is performed up to 4 cycles without lubrication at room temperature. The specimen fabricated by the ARB is a multi-layer aluminum alloy sheet in which the AA1050, AA5052 and AA6061 Al alloys are alternately stacked to each other. The average grain size of the starting material is 140 μm, but after 4 cycles of the ARB process, this is reduced to 150 nm. The complex Al alloy still shows an ultrafine grained microstructure at annealing temperatures up to 250°C, but after annealing at 300°C, it exhibits a heterogeneous structure containing both the ultrafine grains and the coarse grains due to the occurrence of discontinuous recrystallization. The specimens annealed at temperatures above 300 °C also show a heterogeneous microstructure even if the heterogeneities of grain size differ from each other. The texture develops abnormally at higher annealing temperatures; the deformation textures are developed as [112]//ND and [111]//ND components, even in the recrystallized specimens. As the annealing temperature increases, the number fraction of the high-angle grain boundaries gradually decreases. The changes in microstructure and texture of the specimens with increase of the annealing temperature are compared to those of the specimens processed by 2-cycle of the ARB.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
103--107
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Mokpo National University, Advanced Materials Science and Engineering, Muan-gun, Jeonnam 58554, Korea
autor
- Mokpo National University, Advanced Materials Science and Engineering, Muan-gun, Jeonnam 58554, Korea
Bibliografia
- [1] S.W. Park, Y.W. Song, J.Y. Yeo, S.Y Han, H.J. Choi, J. Power Mater. 30 (3), 203 (2023).
- [2] J.A. Lee, J.H. Choe, H.S. Kim, J. Power Mater. 30 (3), 255 (2023).
- [3] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scrip. Mater. 39, 1221 (1998).
- [4] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47, 579 (1999).
- [5] S.H. Lee, Y Saito, T. Sakai, H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
- [6] S.H. Lee, H. Utsunomiya, T. Sakai, Mater. Trans. 45, 2177 (2004).
- [7] S.H. Lee, J. Kor. Inst. Met & Mater. 43 (12), 786 (2005).
- [8] S.H. Lee, C.H. Lee, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 6, 3661 (2006).
- [9] S.H. Lee, C.H. Lee, S.J. Yoon, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 7, 3872 (2007).
- [10] N. Takata, S. H. Lee, C.Y. Lim, S.S. Kim, N. Tsuji, J. Nanosci. and Nanotech. 7, 3985 (2007).
- [11] S.H. Lee, H.W. Kim, C.Y. Lim, J. Nanosci. and Nanotech. 10, 3389 (2010).
- [12] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban, Composites Sci. and Tech. 68, 2003 (2008).
- [13] Ming-Che Chen, Chih-Chun Hsieh, Weite Wu, Met. Mater. Int. 13 (3), 201 (2007).
- [14] Guanghui Min, J.M. Lee, S.B. Kang, H. W. Kim, Mater. Letters 60, 3255 (2006).
- [15] S.H. Lee, C.S. Kang, Korean J. Met. Mater. 49 (11), 893 (2011).
- [16] S.H. Lee, J.H. Kim, Korean J. Met Mater. 51 (4), 251 (2013).
- [17] S.H. Lee, J.H. Kim, J. Nanosci. and Nanotech. 15, 459 (2015).
- [18] S.H. Lee, Arch. Metall. Mater. 65, 1093 (2020).
- [19] S.H. Jo, S.H. Lee, Arch. Metall. Mater. 66, 765 (2021).
- [20] S.H. Jo, S.H. Lee, Korean J. Mater. Res. 32 (2), 72 (2022).
Uwagi
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSTT) (No. 2022R1A2C1012426).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4db42885-d80a-4984-bba3-618e1eecaf73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.