Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Glioma detection and classification is an critical step to diagnose and select the correct treatment for the brain tumours. There has been advances in glioma research and Magnetic Resonance Imaging (MRI) is the most accurate non-invasive medical tool to localize and analyse brain cancer.The scientific global community has been organizing challenges of open data analysis to push forward automatic algorithms to tackle this task. In this paper we analyse part of such challenge data, the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), with novel algorithms using partial learning to test an active learning methodology and tensor-based image modelling methods to deal with the fusion of the multimodal MRI data into one space. A Random Forest classifier is used for pixel classification. Our results show an error rates of 0.011 up to 0.057 for intra-subject classification. These results are promising compared to other studies. We plan to extend this method to use more than 3 MRI modalities and present a full active learning approach.
Rocznik
Tom
Strony
165--172
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
- ENGINE Centre, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- ENGINE Centre, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- ENGINE Centre, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Systems and Computer Networks, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] BAUER S., WIEST R., NOLTE L.-P., REYES M. A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 2013, Vol. 58. p. R97.
- [2] BIGUN J. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, Vol. 13. IEEE, pp. 775–790.
- [3] BREIMAN L. Random forests. Machine Learning, 2001, Vol. 45. Kluwer Academic Publishers, pp. 5–32.
- [4] CYGANEK B. Object detection and recognition in digital images: Theory and practice. 2013. John Wiley & Sons, p. 552.
- [5] CYGANEK B. Pattern recognition framework based on the best rank-( r 1, r 2,..., r k) tensor approximation. Computational vision and medical image processing IV: Proceedings of VipIMAGE 2013 - IV ECCOMAS thematic conference on Computational vision and medical image processing, 2013. pp. 301–306.
- [6] DE LUIS-GARCIA R., DERICHE R., ROUSSON M., ALBEROLA-LOPEZ C. Tensor processing for texture and colour segmentation. Image Analysis, Lecture Notes in Computer Science, Vol 3540, 2005. pp. 1117–1127.
- [7] GORDILLO N., MONTSENY E., SOBREVILLA P. State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, Oct. 2013, Vol. 31. pp. 1426–1438.
- [8] LATHAUWER D. L. Signal processing based on multilinear algebra. 1997. PhD dis-sertation, Katholieke Universiteit Leuven.
- [9] MENZE B., JAKAB A., BAUER S. E. A. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, Oct. 2015, Vol. 34. pp. 1993–2024.
- [10] PERONA, P. M. J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jul 1990, Vol. 12. IEEE, pp. 629–639.
- [11] SAPIRO G. Geometric partial differential equations and image analysis. 2006. Cambridge University Press, p. 385.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4db17a55-2201-4037-b067-c5e89fd5cfcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.