PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainability modeling in energy and labor intensity of manufacturing processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manufacturing sector plays a pivotal role in global economic growth and improving living standards. However, it faces significant challenges related to environmental degradation and resource depletion due to traditional manufacturing processes. This paper aims to explore the optimization of production processes within the context of sustainable development, focusing on energy intensity, labor intensity, and ergonomics. Through a systematic literature review, the author analyzes various multicriteria decision-making (MCDM) methods applicable to manufacturing, assessing their effectiveness in addressing sustainability challenges. This research reveals that the MCDM approaches can effectively balance the interrelated aspects of energy consumption, labor management, and ergonomic design, leading to enhanced production efficiency and reduced environmental impact. The author hypothesizes that the integration of the MCDM methods will result in improved decision-making processes that foster sustainability in the manufacturing industry. The findings of this study contribute to the ongoing discourse on sustainable manufacturing practices and provide a foundational framework for future research in this area.
Rocznik
Strony
32--45
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • University of Szczecin, Doctoral School, Institute of Management
Bibliografia
  • 1. Alrasheedi, A.F., Mishra, A.R., Rani, P., Zavadskas, E.K. & Cavallaro, F. (2023) Multicriteria group decision making approach based on an improved distance measure, the SWARA method and the WASPAS method. Granular Computing 8 (6), pp. 1867‒1885, doi: 10.1007/s41066-023- 00413-x.
  • 2. Angelo, A.C.M. & Marujo, L.G. (2020) Life cycle sustainability assessment and decision-making under uncertainties. In: Ren, J. & Toniolo, S. (Eds) Life Cycle Sustainability Assessment for Decision-Making. Methodologies and Case Studies, pp. 253‒268, Elsevier, doi: 10.1016/B978-0- 12-818355-7.00012-9.
  • 3. Arce, M.E., Saavedra, Á., Míguez, J.L. & Granada, E. (2015) The use of grey-based methods in multicriteria decision analysis for the evaluation of sustainable energy systems: A review. Renewable and Sustainable Energy Reviews 47, pp. 924‒932, doi: 10.1016/j.rser.2015.03.010.
  • 4. Awasthi, A., Saxena, K.K. & Arun, V. (2020) Sustainability and survivability in manufacturing sector. In: Kumar, K. & Davim, J.P. (Eds) Modern Manufacturing Processes, pp. 205‒219. Woodhead Publishing, doi: 10.1016/B978-0- 12-819496-6.00011-7.
  • 5. Bao, Q., Yuxin, Z., Yuxiao, W. & Feng, Y. (2020) Can entropy weight method correctly reflect the distinction of water quality indices? Water Resources Management 34, pp. 3667‒3674, doi: 10.1007/s11269-020-02641-1.
  • 6. Başkent, E.Z. & Balci, H. (2024) A priory allocation of ecosystem services to forest stands in a forest management context considering scientific suitability, stakeholder engagement and sustainability concept with multicriteria decision analysis (MCDA) technique: A case study in Turkey. Journal of Environmental Management 369, 122230, doi: 10.1016/j.jenvman.2024.122230.
  • 7. Bid, S. & Siddique, G. (2019) Human risk assessment of Panchet dam in India using TOPSIS and WASPAS multicriteria decision-making (MCDM) methods. Heliyon 5 (6), doi: 10.1016/j.heliyon.2019.e01956.
  • 8. Calabrese, A., Costa, R., Levialdi, N. & Menichini, T. (2019) Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues. Technological Forecasting and Social Change 139, pp. 155‒168, doi: 10.1016/j.techfore. 2018.11.005.
  • 9. Çelikbilek, Y. & Tüysüz, F. (2020) An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics 7 (2), pp. 281‒300, doi: 10.1080/23270012.2020.1748528.
  • 10. Chodha, V., Dubey, R., Kumar, R., Singh, S. & Kaur, S. (2022) Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Materials Today: Proceedings 50, pp. 709‒715, doi: 10.1016/j.matpr.2021.04.487.
  • 11. Depczyński, R. (2022) Energy and labor intensity of manufacturing processes progressing toward sustainable development: A systematic literature review and SWOT analysis for a steel manufacturing company. Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie 72 (144), pp. 201‒210, doi: 10.17402/ 549.
  • 12. Deshpande, P.C., Skaar, C., Brattebø, H. & Fet, A.M. (2020) Multicriteria decision analysis (MCDA) method for assessing the sustainability of end-of-life alternatives for waste plastics: A case study of Norway. Science of The Total Environment 719, 137353, doi: 10.1016/j. scitotenv.2020.137353.
  • 13. Erdogan, S.A., Šaparauskas, J. & Turskis, Z. (2019) A multicriteria decision-making model to choose the best option for sustainable construction management. Sustainability 11 (8), 2239, doi: 10.3390/su11082239.
  • 14. Eslami, Y., Dassisti, M., Lezoche, M. & Panetto, H. (2019) A survey on sustainability in manufacturing organisations: dimensions and future insights. International Journal of Production Research 57 (15‒16), pp. 5194‒5214, doi: 10.1080/00207543.2018.1544723.
  • 15. Gupta, H. (2018) Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management 68, pp. 35‒47, doi: 10.1016/j. jairtraman.2017.06.001.
  • 16. Haase, M., Babenhauserheide, N. & Rösch, C. (2020) Multicriteria decision analysis for sustainability assessment of 2nd generation biofuels. Procedia CIRP 90, pp. 226‒231, doi: 10.1016/j.procir.2020.02.124.
  • 17. Hashemi, A., Dowlatshahi, M.B. & Nezamabadi-pour, H. (2021) VMFS: A VIKOR-based multi-target feature selection. Expert Systems with Applications 182, 115224, doi: 10.1016/j.eswa.2021.115224.
  • 18. Islam, M.R., Aziz, M.T., Alauddin, M., Kader, Z. & Islam, M.R. (2024) Site suitability assessment for solar power plants in Bangladesh: A GIS-based analytical hierarchy process (AHP) and multicriteria decision analysis (MCDA) approach. Renewable Energy 220, 119595, doi: 10.1016/j.renene.2023.119595.
  • 19. Jamwal, A., Agrawal, R., Sharma, M. & Kumar, V. (2021) Review on multicriteria decision analysis in sustainable manufacturing decision making. International Journal of Sustainable Engineering 14 (3), pp. 202‒225, doi: 10.1080/19397038.2020.1866708.
  • 20. Kizielewicz, B. & Sałabun, W. (2024) SITW method: a new approach to re-identifying multicriteria weights in complex decision analysis. Spectrum of Mechanical Engineering and Operational Research 1 (1), pp. 215‒226, doi: 10.31181/smeor11202419.
  • 21. Kizielewicz, B., Shekhovtsov, A. & Sałabun, W. (2023) pymcdm ‒ The universal library for solving multicriteria decision-making problems. SoftwareX 22, 101368, doi: 10. 1016/j.softx.2023.101368.
  • 22. Krishnan, A.R., Kasim, M.M., Hamid, R. & Ghazali, M.F. (2021) A modified CRITIC method to estimate the objective weights of decision criteria. Symmetry 13 (6), 973, doi: 10.3390/sym13060973.
  • 23. Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P. & Bansal, R.C. (2017) A review of multicriteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews 69, pp. 596‒609, doi: 10.1016/j.rser.2016.11.191.
  • 24. Lacity, M.C. & Willcocks, L.P. (2018) Robotic Process and Cognitive Automation: The Next Phase. Stratford-upon-Avon: SB Publishing.
  • 25. Lombardi Netto, A., Salomon, V.A., Ortiz‐Barrios, M.A., Florek‐Paszkowska, A.K., Petrillo, A. & De Oliveira, O.J. (2021) Multiple criteria assessment of sustainability programs in the textile industry. International Transactions in Operational Research 28 (3), pp. 1550‒1572, doi: 10.1111/itor.12871.
  • 26. Maldonado-Macías, A., Camacho-Alamilla, R., Valadez Torres, S.G., García Alcaraz, J.L. & Limón, J. (2015) Determination of burnout syndrome among middle and senior managers in manufacturing industry in Ciudad Juarez. Procedia Manufacturing 3, pp. 6459‒6466, doi: 10.1016/j.promfg.2015.07.927.
  • 27. Mecca, B. (2023) Assessing the sustainable development: A review of multicriteria decision analysis for urban and architectural sustainability. Journal of Multicriteria Decision Analysis 30 (5‒6), pp. 203‒218, doi: 10.1002/mcda.1818.
  • 28. Omran, I.I., Al-Saati, N.H., Al-Saati, H.H., Hashim, K.S. & Al-Saati, Z.N. (2021) Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multicriteria decision analysis (MCDA). Water Practice & Technology 16 (2), pp, 648‒660, doi: 10.2166/ wpt.2021.013.
  • 29. Otsuka, A., Goto, M. & Sueyoshi, T. (2014) Energy efficiency and agglomeration economies: the case of Japanese manufacturing industries. Regional Science Policy & Practice 6 (2), pp. 195‒212, doi: 10.1111/rsp3.12039.
  • 30. Rauf, L.F., Ali, S.S., Al-Ansari, N. & Nordell, B. (2024) Sustainability indicator for evaluating the ATES system in Halabja-Khurmal sub-basin NE-Iraq using GISbased MCDA method. Applied Water Science 14 (6), 137, doi: 10.1007/s13201-024-02206-2.
  • 31. Saad, M.H., Nazzal, M.A. & Darras, B.M. (2019) A general framework for sustainability assessment of manufacturing processes. Ecological Indicators 97, pp. 211‒224, doi: 10.1016/j.ecolind.2018.09.062.
  • 32. Sahoo, S.K. & Goswami, S.S. (2023) A comprehensive review of multiple criteria decision-making (MCDM) methods: Advancements, applications, and future directions. Decision Making Advances 1 (1), pp 25‒48, doi: 10.31181/ dma1120237.
  • 33. Sałabun, W., Wątróbski, J. & Shekhovtsov, A. (2020) Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 12(9), 1549, doi: 10.3390/sym12091549.
  • 34. Shukla, H.M. & Gupta, M.M. (2024) A comprehensive approach to enhance wood cutting productivity: Integration of spherical fuzzy DEMATEL and artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, doi: 10.1177/09544089241253083.
  • 35. Takam Tiamgne, X., Kanungwe Kalaba, F., Raphael Nyirenda, V. & Phiri, D. (2022) Modelling areas for sustainable forest management in a mining and human dominated landscape: A Geographical Information System (GIS)-Multicriteria Decision Analysis (MCDA) approach. Annals of GIS 28 (3), pp. 343‒357, doi: 10.1080/19475683.2022. 2026469.
  • 36. Tuş, A. & Aytaç Adal, E. (2019) The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch 56, pp. 528‒538, doi: 10.1007/s12597-019-00371-6.
  • 37. Wang, J.J., Jing, Y.Y., Zhang, C.F. & Zhao, J.H. (2009) Review on multicriteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 13 (9), pp. 2263‒2278, doi: 10.1016/j. rser.2009.06.021.
  • 38. Wang, W., Wu, L., Li, X., Qu, F., Li, W., Ma, Y. & Ma, D. (2023) An evaluation method for automated vehicles combining subjective and objective factors. Machines 11 (6), 597, doi: 10.3390/machines11060597.
  • 39. Wątróbski, J. (2023) Temporal PROMETHEE II ‒ New multicriteria approach to sustainable management of alternative fuels consumption. Journal of Cleaner Production 413, 137445, doi: 10.1016/j.jclepro.2023.137445.
  • 40. Wątróbski, J., Bączkiewicz, A., Ziemba, E. & Sałabun, W. (2022) Sustainable cities and communities assessment using the DARIA-TOPSIS method. Sustainable Cities and Society 83, 103926, doi: 10.1016/j.scs.2022.103926.
  • 41. Weber J. (2023) Gridlock in compromise, or is multi-objective optimisation possible in renewable energy planning? A stakeholder analysis using scenario-MCDA. International Journal of Sustainable Energy 42 (1), pp. 1538‒1568, doi: 10.1080/14786451.2023.2275812.
  • 42. Whichello, C., Smith, I., Veldwijk, J., de Wit, G.A., Rutten-van Molken, M.P. & de Bekker-Grob, E.W. (2023) Discrete choice experiment versus swing-weighting: A head-to-head comparison of diabetic patient preferences for glucose-monitoring devices. PLoS One 18 (7), e0283926, doi: 10.1371/journal.pone.0283926.
  • 43. Więckowski, J., Kizielewicz, B., Shekhovtsov, A. & Sałabun, W. (2023) RANCOM: A novel approach to identifying criteria relevance based on inaccuracy expert judgments. Engineering Applications of Artificial Intelligence 122, 106114, doi: 10.1016/j.engappai.2023.106114.
  • 44. Więckowski, J., Sałabun, W., Kizielewicz, B., Bączkiewicz, A., Shekhovtsov, A., Paradowski, B. & Wątróbski, J. (2023) Recent advances in multicriteria decision analysis: A comprehensive review of applications and trends. International Journal of Knowledge-based and Intelligent Engineering Systems 27 (4), pp. 367‒393, doi: 10.3233/KES-230487.
  • 45. Więckowski, J., Wątróbski, J., Kizielewicz, B. & Sałabun, W. (2023) Complex sensitivity analysis in Multicriteria Decision Analysis: An application to the selection of an electric car. Journal of Cleaner Production 390, 136051, doi: 10.1016/j.jclepro.2023.136051.
  • 46. Willcocks, L., Lacity, M. & Craig, A. (2017) Robotic process automation: strategic transformation lever for global business services? Journal of Information Technology Teaching Cases 7, pp. 17‒28, doi: 10.1057/s41266-016- 0016-9.
  • 47. Yang, W., Xu, K., Lian, J., Ma, C. & Bin, L. (2018) Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods. Ecological Indicators 89, pp. 269‒280, doi: 10.1016/j.ecolind.2018.02.015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4daa7822-3ee7-4491-bfdf-fe5ebde863ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.