PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient recovery voltage analysis for various current breaking mathematical models: shunt reactor and capacitor bank de-energization study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.
Rocznik
Strony
441--458
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • ABB Corporate Research Center Starowiślna 13A, 31-038 Kraków, Poland
  • ABB Corporate Research Center Starowiślna 13A, 31-038 Kraków, Poland
autor
  • ABB Corporate Research Center Starowiślna 13A, 31-038 Kraków, Poland
autor
  • ABB Corporate Research Center Starowiślna 13A, 31-038 Kraków, Poland
autor
  • ABB Corporate Research Center Starowiślna 13A, 31-038 Kraków, Poland
Bibliografia
  • [1] Habedank U., Application of a New Arc Model for the Evaluation of Short-Circuit Breaking Tests. IEEE Transactions on Power Delivery 8(4), (1993).
  • [2] Mayr O., Beitrag zur theorie der statischen und der dynamischen lichtbogens. Archiv fuer Elektrotechnik, Berlin, Germany 37: 588-608 (1943).
  • [3] Hutter S., Uglešić I., Universal arc resistance model “ZAGREB” for EMTP.
  • [4] IEC 60071-4:2004: Insulation coordination – Part 4: Computational guide to insulation co-ordination and modelling of electrical networks.
  • [5] Meyer W.S., Liu T.-H, Alternative Transients Program (ATP) Rule Book. Canadian/American EMTP User Group, 1987-2000 (distributed by EEUG).
  • [6] IEC 62271-110: High-voltage switchgear and controlgear – Part 110: Inductive load switching.
  • [7] IEC 62271-110: High-voltage switchgear and controlgear – Part 100: Alternating-current circuit-breakers.
  • [8] IEC 60071-2: 2004. Insulation coordination – Part 2: 2.
  • [9] IEEE Std 1313.2-1999, IEEE Guide for the Application of Insulation Coordination.
  • [10] IEC-60076-8: Power transformers – Part 8 Application guide.
  • [11] IEC-60076-5: Power transformers – Part 5 Ability to withstand short circuit.
  • [12] Portela C.M., Morais S.A., Teixeira J.S., Circuit-breaker behaviour in reactor switching: applicability and limitations of the concept of chopping number. Power Delivery, IEEE Transactions on 3(3): 1009-1021 (1988).
  • [13] ABB Technical guide: http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/26886facea44b7b1c1257cec0046a07c/$file/1HSM%209543%2023-02en%20Live%20Tank%20Circuit%20Breaker%20-%20Application%20Guide%20Ed1.2.pdf, accessed October 2014.
  • [14] Chang G.W., Huang H.M., Lai J.H., Modeling SF6 Circuit Breaker for Characterizing Shunt Reactor Switching Transients. IEEE Trans. on Power Delivery 22(3): 1533-1540 (2007).
  • [15] Cassie A.M., Arc rupture and circit severity: a new theory. Proceeding of Conference Internationale des Grands Reseaux Electriques a Haute Tension, Paris, France, pp. 1-14 (1932).
  • [16] Ala G., Inzerillo M., An improved circuit-breaker model in MODELS language for ATP-EMTP code. IPST Proceedings (1999).
  • [17] Bizjak G., Zunko P., Povh D., Circuit Breaker Model for Digital Simulation Based on Mayr's and Cassie's Differential Arc Equations (1995).
  • [18] P.H. Schavemakerand L. van der Sluis, The Arc Model Blockset. Proceedings of the Second IASTED International Conference, June 25-28, Greece (2002).
  • [19] Filipović-Grčić B., Uglešić I., Filipović-Grčić D, Analysis of Transient Recovery Voltage in 400 kV SF6 Circuit Breaker Due to Transmission Line Faults. International Review of Electrical Engineering; Sep/Oct 2011 Part B 6(5): 2652.
  • [20] Marti J.R., Accurate Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulations. IEEE Transactions on Power Apparatus and Systems PAS-101(1): 147-157 (1982).
  • [21] CIGRE WG 33.0: Guide to procedure for estimating the lightning performance of transmission line. (1991).
  • [22] ABB technical data sheet: http://www02.abb.com/global/gad/gad02181.nsf/0/a8a42f36692365dcc1257a62003101ce/$file/XLPE+Land+Cable+Systems+-+User%C2%B4s+Guide.pdf, accessed October (2014).
  • [23] IEEE Std C37.011™-2005: Application Guide for Transient Recovery Voltage for AC High-Voltage Circuit Breakers.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d9e2754-22a4-407a-a3d1-836198010036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.