PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the resistance of concrete hollow thin-walled high piers to rock collisions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Concrete hollow thin-walled high piers (CHTWHPs) located in mountainous areas may be destroyed by the huge impact force of accidental rocks. The study focuses on analyzing the effects of rock impact on the pier, including its impact force, pier damage, dynamic response, and energy dissipation characteristics. The results show that: (1) Increasing the impact height led to a decrease in the peak impact force. Specifically, 15.5% decrease in the peak collision force is induced when the height of rock collision rises from 10 m to 40 m. (2) The damage mode of the pier’s collision surface is mainly oval damage with symmetrical center, radial damage on the side surface, and corner shear failure on the cross section. (3) The peak displacement of bridge pier increases with the increase of collision height. As the collision height increased from 10 m to 40 m, the bridge pier’s peak displacement also increased, rising by 104.2%. (4) The concrete internal energy gradually decreased with increasing collision height, dropping by 36.9% when the height of rock collision rises from 10 m to 40 m. The reinforcement internal energy showed an increase of 78%. The results of this study may provide reference for the rock collision resistance design of CHTWHPs.
Rocznik
Strony
187--197
Opis fizyczny
Bibliogr. 18 poz., il., tab.
Twórcy
autor
  • Nanning College of Technology, Guangxi, China
Bibliografia
  • [1] W.C. Yang, Y.K. Liu, E. Deng, Y.W. Wang, X.H. He, and M.F. Lei, “Characteristics of wind field at tunnel-bridge area in steep valley: Field measurement and LES study”, Measurement, vol. 202, art. no. 111806, 2022, doi: 10.1016/j.measurement.2022.111806.
  • [2] X. Zhang, X. Wang, W. Chen, Z. Wen, and X. Li, “Numerical study of rockfall impact on bridge piers and its effect on the safe operation of high-speed trains”, Structure and Infrastructure Engineering, vol. 17, no. 1, pp. 1-19, 2021, doi: 10.1080/15732479.2020.1730406.
  • [3] G.R. Consolazio, R.A. Cook, M.C. McVay, D. Cowan, A. Biggs, and L. Bui, Barge impact testing of the St. George Island Causeway Bridge, Phase III: physical testing and data interpretation. University of Florida, 2006.
  • [4] C.E. Buth, M.S. Brackin, W.F. Williams, and G.T. Fry, Collision loads on bridge piers: phase 2, report of guidelines for designing bridge piers and abutments for vehicle collisions. Texas Transportation Institute, 2011.
  • [5] Y. Xiao, L. Chen, X. Guo, B.S. Chen, and C.L. Chun, “Tests for anti-ram bollards based on truck collision”, Journal of Vibration and Shock, vol. 32, no. 11, pp. 1-6, 2013, doi: 10.13465/j.cnki.jvs.2013.11.028.
  • [6] Y.K. Liu, J. Yang, G.J. Xu, H. Wei, and E. Deng, “Performance of UHPC bridge piers subjected to heavy vehicle collisions and probability analysis of damage level”, Structures, vol. 47, pp. 212-232, 2023, doi: 10.1016/j.istruc.2022.11.061.
  • [7] W. Fan, B. Liu, and G.R. Consolazio, “Residual capacity of axially loaded circular RC columns after lateral low-velocity impact”, Journal of Structural Engineering, vol. 145, no. 6, 2019, doi: 10.1061/(asce)st.1943-541x.0002324.
  • [8] L. Buda-Ożóg, J. Zięba, K. Sieńkowska, and D. Nykiel, “Influence of the tie reinforcement on the development of a collapse caused by the failure of an edge column in RC flat slab system”, Archives of Civil Engineering, vol. 69, no. 1, pp. 39-54, 2023, doi: 10.24425/ace.2023.144158.
  • [9] Y. Shi, H. Hao, and Z.-X. Li, “Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads”, International Journal of Impact Engineering, vol. 35, no. 11, pp. 1213-1227, 2008, doi: 10.1016/j.ijimpeng.2007.09.001.
  • [10] D. Bertrand, F. Kassem, F. Delhomme, and A. Limam, “Reliability analysis of an RC member impacted by a rockfall using a nonlinear SDOF model”, Engineering Structures, vol. 89, pp. 93-102, 2015, doi: 10.1016/j.engstruct.2015.01.051.
  • [11] Y. Yu, L. Deng, W. Wang, and C.S. Cai, “Local impact analysis for deck slabs of prestressed concrete box-girder bridges subject to vehicle loading”, Journal of Vibration and Control, vol. 23, no. 1, pp. 31-45, 2017, doi: 10.1177/1077546315575434.
  • [12] A. Ventura, V. De Biagi, and B. Chiaia, “Effects of rockfall on an elastic-plastic member: A novel compliance contact model and dynamic response”, Engineering Structures, vol. 148, pp. 126-144, 2017, doi: 10.1016/j.engstruct.2017.06.046.
  • [13] R. Xie, W. Fan, B. Liu, and D. Shen, “Dynamic behavior and vulnerability analysis of bridge columns with different cross-sectional shapes under rockfall impacts”, Structures, vol. 26, pp. 471-486, 2020, doi: 10.1016/j.istruc.2020.04.042.
  • [14] W.C. Yang, Y.K. Liu, E. Deng, X.H. He, M.F. Lei, and Y.F. Zou, “Comparative study on the wind characteristics of tunnel-bridge and tunnel-flat ground infrastructures on high-speed railway”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 226, art. no. 105006, 2022, doi: 10.1016/j.jweia.2022.105006.
  • [15] M. Kiraga, S. Bajkowski, and J. Urbański, “Bridge headwater afflux estimation using bootstrap resampling method”, Archives of Civil Engineering, vol. 69, no. 1, pp. 21-37, 2023, doi: 10.24425/ace.2023.144157.
  • [16] F. Li, Y.K. Liu, and J. Yang, “Durability assessment method of hollow thin-walled bridge piers under rockfall impact based on damage response surface”, Sustainability, vol. 14, no. 19, art. no. 12196, 2022, doi: 10.3390/su141912196.
  • [17] V.D. Tin, M.P. Thong, and H. Hao, “Proposed design procedure for reinforced concrete bridge columns subjected to vehicle collisions”, Structures, vol. 22, pp. 213-229, 2019, doi: 10.1016/j.istruc.2019.08.011.
  • [18] K. Fujikake, B. Li, and S. Soeun, “Impact response of reinforced concrete beam and its analytical evaluation”, Journal of Structural Engineering, vol. 135, no. 8, pp. 938-950, 2009, doi: 10.1061/(asce)st.1943-541x.0000039.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d9de5d2-741c-4f69-b6d4-07645999349f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.