PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and characterization of BiOCl/TiO2/MMTcomposite materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To broaden the light response range of TiO2 and improve its photocatalytic activity, BiOCl/ TiO2 /MMT composite materials(BTMC) with outstanding photocatalytic performance were prepared by the sol-gel method with montmorillonite (MMT) asthe supporting material, tetrabutyl titanate as titanium source and, bismuth nitrate pentahydrate as the bismuth source. Theproperties of the prepared materials were characterized by X-ray diffractometer (XRD), surface and porosity analysis (BET),scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM),X-ray photoelectron spectrometry (XPS), and ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS). When the Bi/Timolar ratio was 20%, the composite material exhibited a slit mesoporous structure, and its specific surface area was 109.02m2/g, with optimum photocatalytic activity. TiO2 and BiOCl formed the type-II heterojunction on the surface of MMT, whichfacilitates the transfer of photogenerated electrons and holes, thus enhancing the photocatalytic activity of BTMC-20. Theresults of this study indicated that BTMC-20 is a promising photocatalytic composite material and has better photocatalyticproperties under visible light.
Słowa kluczowe
Wydawca
Rocznik
Strony
354--367
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • College of Mining, Guizhou University, Guiyang 550025, China
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas,Guiyang 550025, China
autor
  • College of Mining, Guizhou University, Guiyang 550025, China
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas,Guiyang 550025, China
autor
  • College of Mining, Guizhou University, Guiyang 550025, China
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas,Guiyang 550025, China
autor
  • College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412000, China
Bibliografia
  • [1] Deng F, Shi H, Guo Y, Luo X, Zhou J. Engineering paths of sustainable and green photocatalytic degradation technology for pharmaceuticals and organic contaminants of emerging concern. Curr Opin Green Sustain Chem. 2021;29:100465. DOI:10.1016/j.cogsc.2021.100465.
  • [2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38. DOI:10.1038/238037a0.
  • [3] Colomer MT, Duarte KJ, Ortiz AL, Mercado DF, Ballesteros-Rueda LM. Influence of Pr3+ doping on the synthesis of colloidal sols and nanoparticulate TiO2 xerogels and their photocatalytic activity. Mater Charact. 2021;182:111536. DOI:10.1016/j.matchar.2021.111536.
  • [4] Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. J Photoch Photobio C. 2012;13:169–189. DOI:10.1016/j.jphotochemrev.2012.06.001.
  • [5] Gilja V, Katancic Z, Krehula LK, Mandic V, Hrnjak-Murgic Z. Efficiency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye. Sci Eng Compos Mater. 2019;26. DOI:10.1515/secm.2019.0017.
  • [6] Li JN, Wu F, Shi JY, Ma L, Yan XB, Yang N, Ding BF, Zheng SK. First-principles calculation of Cr/S codoped rutile TiO2. Mater Sci-Pol. 2020;38:253–262. DOI:10.2478/msp.2020.0042.
  • [7] Mathur AS, Kumar P, Singh BP. Comparative study of absorption band edge tailoring by cationic and anionic doping in TiO2. Mater Sci-Pol. 2018;36:435–438. DOI:10.2478/msp.2018.0060.
  • [8] Yousef A. Fabrication of heterojunction MnTiO3-TiO2-decorated carbon nanofibers via electrospinning as an effective multifunctional photocatalyst. Mater Sci-Pol. 2022;40:289–305. DOI:10.2478/msp.2022.0028.
  • [9] Zou YL, Huang XS, Yu T, Tong XQ, Li Y, Lian XX, Xie Y, Huang JM, He W, Li WX. Cu-doped TiO2 brookite photocatalyst with enhanced visible light photocatalytic activity. Mater Sci-Pol. 2020;38:644–653. DOI:10.2478/msp.2020.0074.
  • [10] Zhou P, Shen Y, Zhao S, Li G, Cui B, Wei D, et al. Synthesis of clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light. Chem Eng J. 2021;407:126697. DOI:10.1016/j.cej.2020.126697.
  • [11] Wu A, Wang D, Wei C, Zhang X, Liu Z, Feng P, et al. A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Appl Clay Sci. 2019;183:105352. DOI:10.1016/j.clay.2019.105352.
  • [12] Zhao J, Huang B, Gao W, Zheng L, Song P, He M. Periodic DFT study on heavy metals Cu(II) and Pb(II) atoms adsorption on Na-montmorillonite (010) edge surface. Solid State Commun. 2023;366:115171. DOI:10.1016/j.ssc.2023.115171.
  • [13] Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J. 2017;308:438–462. DOI:10.1016/j.cej.2016.09.029.
  • [14] Mishra A, Mehta A, Sharma M, Basu S. Impact of Ag nanoparticles on photomineralization of chlorobenzene by TiO2/bentonite nanocomposite. J Environ Chem Eng. 2017;5:644–651. DOI:10.1016/j.jece.2016.12.042.
  • [15] Zhang Y, Park M, Kim HY, Ding B, Park S. Insitu synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation. Appl Surf Sci. 2016;384:192–199. DOI:10.1016/j.apsusc.2016.05.039.
  • [16] Zhang D, Tang Y, Qiu X, Yin J, Su C, Pu X. Use of synergistic effects of the co-catalyst, p-n heterojunction, and porous structure for improvement of visible-light photocatalytic H2 evolution in porous Ni2O3/Mn0.2Cd0.8S/Cu3P@Cu2S. J Alloy Compd. 2020;845:155569. DOI:10.1016/j.jallcom.2020.155569.
  • [17] Li H, Li J, Ai Z, Jia F, Zhang L. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Edit. 2018;57:122– 138. DOI:10.1002/anie.2017.05628.
  • [18] Wang X, Ni Q, Zeng D, Liao G, Wen Y, Shan B, et al. BiOCl/TiO2 heterojunction network with high energy facet exposed for highly efficient photocatalytic degradation of benzene. Appl Surf Sci. 2017;396:590–598. DOI:10.1016/j.apsusc.2016.10.201.
  • [19] Li W, Tian Y, Li H, Zhao C, Zhang B, Zhang H, et al. Novel BiOCl/TiO2 hierarchical composites: synthesis, characterization and application on photocatalysis. Appl Catal A-Gen. 2016;516:81–89. DOI:10.1016/j.apcata.2016.02.006.
  • [20] Choi YI, Jeon KH, Kim HS, Lee JH, Park SJ, Roh JE, et al. TiO2/BiOX (X=Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation. Sep Purif Technol. 2016;160:28–42. DOI:10.1016/j.seppur.2016.01.009.
  • [21] Dulian P, Zajic J, Zukowski W. Effect of titanium source and sol-gel TiO2 thin film formation parameters on its morphology and photocatalytic activity. Mater Sci-Pol. 2020;38:424–433. DOI:10.2478/msp-2020-0056.
  • [22] Tian JW, Tuo BY, Wang JL, Tang Y, Nie GH, Yang Y. Preparation of different crystal types TiO2 materials and its photodegradation performance in Congo Red wastewater. Phase Transit. 2022;95:707–725. DOI:10.1080/01411594.2022.2107927.
  • [23] Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc. 2012;134:6751–6761. DOI: 10.1021/ja300823a.
  • [24] Gu CJ, Peng TJ, Sun HJ, Lv X, Luo LM. Assembled structure and characterization of TiO2/Montmorillonite nanocomposites. J Synth Cryst. 2012;41(3):771–778. DOI:10.16553/j.cnki.issn1000-985x.2012.03.019.(in Chinese)
  • [25] Luo Z, Wang H, Ma Y, Zhang G, Yan D, Bai X, et al. High ionic conductivity of Lu2O3-TiO2 co-doped Bi2O3 ceramics. Mater Res Express. 2021;8:25001. DOI: 10.1088/2053-1591/abe014.
  • [26] Kalaiarasi S, Jose M. Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes. Applied Physics A. 2017;123:512. DOI: 10.1007/s00339-017-1121-0.
  • [27] Shinde DS, Bhange PD, Jha RK, Bhange DS. TiO2 nanoparticles decorated on BiOCl flakes with enhanced visible light photocatalytic activity. Chemistryselect. 2020;5:2618–2626. DOI:10.1002/slct.201904656.
  • [28] Tian JW, Tuo BY, Wang JL, Tang Y, Nie GH, Yang Y, et al. Photocatalytic degradation of simulated Congo red wastewater by BiOCl/TiO2/Montmorillonite composites. Conserv Utiliz Mineral Resources. 2022; 42(04):68–75. DOI: 10.13779/j.cnki.issn1001-0076.2022.04.008.(in Chinese)
  • [29] Manga KK, Zhou Y, Yan Y, Loh KP. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv Funct Mater. 2009;19:3638–3643. DOI: 10.1002/adfm.200900891.
  • [30] Yu H, Huang B, Wang H, Yuan X, Jiang L, Wu Z, et al. Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms. J Colloid Interf Sci. 2018;522:82–94. DOI:10.1016/j.jcis.2018.03.056.
  • [31] Liu J, Zhang GK. Recent advances in synthesis and applications of clay-based photocatalysts: a review. Phys Chem Chem Phys. 2014;16:8178–192. DOI: 10.1039/c3cp54146k.
  • [32] Yang G, Zhao H, Liu Y, Li Z, Gao F, Zhang Q, et al. Slow release fertilizers based on polyphosphate/montmorillonite nanocomposites for improving crop yield. Arab J Chem. 2023;16:104871. DOI:10.1016/j.arabjc.2023.104871.
  • [33] Yu Y, Yang Z, Shang Z, Wang X. One-step solution combustion synthesis of Bi/BiOCl nanosheets: Reaction mechanism and photocatalytic RhB degradation. J Phys Chem Solids. 2023;174:111172. DOI:10.1016/j.jpcs.2022.111172.
  • [34] An Y, Ma B, Li X, Chen Y, Wang C, Wang B, et al. A review on the roasting-assisted leaching and recovery of V from vanadium slag. Process Saf Environ. 2023;173:263–276. DOI:10.1016/j.psep.2023.03.013.
  • [35] Liu X, Duan X, Bao T, Hao D, Chen Z, Wei W, et al. High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. J Hazard Mater. 2022;430:128195. DOI:10.1016/j.jhazmat.2021.128195.
  • [36] Luo C, Zhao J, Li Y, Zhao W, Zeng Y, Wang C. Photocatalytic CO2 reduction over SrTiO3: correlation between surface structure and activity. Appl Surf Sci. 2018;447:627–635. DOI:10.1016/j.apsusc.2018.04.049.
  • [37] Duo FF, Wang YW, Fan CM, Mao XM, Zhang XC, Wang YF, et al. Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity. Mater Charact. 2015;99:8–16. DOI:10.1016/j.matchar.2014.11.002.
  • [38] Zhang G, Sun Z, Hu X, Song A, Zheng S. Synthesis of BiOCl/TiO2-zeolite composite with enhanced visible light photoactivity. J Taiwan Inst Chem E. 2017;81:435–444. DOI:10.1016/j.jtice.2017.09.030.
  • [39] Jia X, Hu C, Cao J, Cao D, Lin H, Chen S. Using wideband-gap BiOCl to greatly enhance the photocarriers separation of AgI via in-situ Ag bridge: Interfacial electron transfer route, density functional theory calculation and mechanism study. Appl Surf Sci. 2022;574:151671. DOI:10.1016/j.apsusc.2021.151671.
  • [40] Mohammad A, Khan ME, Cho MH, Yoon T. Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: tuning of bandgap and water depollution applications under visible light irradiation. Ceram Int. 2021;47:15073–15081. DOI:10.1016/j.ceramint.2021.02.065.
  • [41] Maimaitizi H, Abulizi A, Kadeer K, Talifu D, Tursun Y. In situ synthesis of Pt and N co-doped hollow hierarchical BiOCl microsphere as an efficient photocatalyst for organic pollutant degradation and photocatalytic CO2 reduction. Appl Surf Sci. 2020;502:144083. DOI:10.1016/j.apsusc.2019.144083.
  • [42] Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater. 2017;29: 1601694. DOI:10.1002/adma.201601694.
  • [43] Jiang GH, Wang RJ, Wang XH, Xi XG, Hu RB, Zhou Y, et al. Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl Mater Inter. 2012;4:4440–4444. DOI:10.1021/am301177k.
  • [44] Wang S, Li D, Sun C, Yang S, Guan Y, He H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl Catal B-Environ. 2014;144:885–892. DOI:10.1016/j.apcatb.2013.08.008.
  • [45] Ao M, Liu K, Tang X, Li Z, Peng Q, Huang J. BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B. Beilstein J Nanotech. 2019;10:1412– 1422. DOI:10.3762/bjnano.10.139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d9d7319-9a01-45b0-990e-c50caee33388
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.