PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of the support system’s kinematic structure on selected kinematic and dynamic quantities of an experimental crane

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparative analysis of two kinematic structures of the support system (with supports with bilateral and unilateral constraints), which were used in an experimental model of a crane. The computational model was developed by using the ADAMS software. The impact of the kinematic structure of the support system on selected kinematic and dynamic values that were recorded during the slewing motion was analysed. It was found, among other things, that an increased number of degrees of freedom of the support system leads to multiple distortions of time characteristics of kinematic and dynamic quantities.
Rocznik
Strony
189--193
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Computer Science, Department of Engineering Fundamentals, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • 1. Araya H., Kakuzena M., Kinugawab H., Arai T. (2004), Level luffing control system for crawler cranes, Automation in Construction, 13, 689–697.
  • 2. Blackburn D., Lawrence J., Danielson J., Singhose W., Kamoi T., Taura A. (2010), Radial-motion assisted command shapers for nonlinear tower crane rotational slewing, Control Engineering Practice, 18, 523–531.
  • 3. Cha J.H., Roh M.I., Lee K.Y. (2010), Dynamic response simulation of a heavy cargo suspended by a floating crane based on multibody system dynamics, Ocean Engineering, 37 (14-15), 1273–1291.
  • 4. Geisler T., Sochacki W. (2011), Modelling and research into the vibrations of truck crane, Scientific Research of the Institute of Mathematics and Computer Science, 1 (10), 49-60.
  • 5. Giergiel J. (1986), Damping of mechanical vibrations (in Polish), Wyd. AGH, Kraków.
  • 6. Jerman B., Podrzaj P., Kramar J. (2004), An investigation of slewing-crane dynamics during slewing motion—development and verification of a mathematical model, International Journal of Mechanical Sciences, 46, 729–750.
  • 7. Kilicaslan S., Balkan T., Ider S.K. (1999), Tipping loads of mobile cranes with flexible booms, Journal of Sound and Vibration, 223 (4), 645-657.
  • 8. Kłosiński J. (2005), Swing-free stop control of the slewing motion of a mobile crane, Control Engineering Practice, 13, 451–460.
  • 9. Kłosiński J., Trąbka A. (2010), Frequency analysis of vibratory device model (in Polish), Pneumatyka, 1, 46-49.
  • 10. Maczyński A. (2000), The influence of crane support flexibility on load motion, 4th EUROMECH Solid Mechanics Conference, Book of abstracts II, General sessions, Metz, France, June 26-30, 519.
  • 11. Mijailović R. (2011), Modelling the dynamic behaviour of the truckcrane, Transport, 26 (4), 410–417.
  • 12. Paszkiewicz T., Osiński M., Wojciech S. (1999), Dynamic analysis of an offshore crane on offshore installations, 4th International Offshore Cranes Conference, Stavanger, Norway, April 26-28, 2-38.
  • 13. Smoczek J. (2014), Fuzzy crane control with sensorless payload deflection feedback for vibration reduction, Mechanical Systems and Signal Processing, 46, 70–81.
  • 14. Smoczek J., Szpytko J. (2012), Fuzzy rules-based approach to estimate the availability of transportation system, International Journal of Intelligent Systems Technologies and Applications, 11 (1/2), 117-137.
  • 15. Smoczek J., Szpytko J. (2014), Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system, Engineering Applications of Artificial Intelligence, 28, 190–200.
  • 16. Sochacki W. (2007), The dynamic stability of a laboratory model of a truck crane, Thin-Walled Structures, 45, 927–930.
  • 17. Sosna E. (1984), Influence of flexibility of support system on dynamics of the telescopic mobile crane (in Polish), Praca doktorska, Politechnika Łódzka.
  • 18. Terashima K., Shen Y., Yano K. (2007), Modeling and optimal control of a rotary crane using the straight transfer transformation method, Control Engineering Practice, 15, 1179–1192.
  • 19. Trąbka A. (2014), Dynamics of telescopic cranes with flexible structural components, International Journal of Mechanical Sciences, 88, 162–174.
  • 20. Trombski M. (Editor) (2003), Control algorithms of telescopic crane operating cycle (in Polish), Wyd. ATH w Bielsku-Białej.
  • 21. Uchiyama N. (2009), Robust control of rotary crane by partial-state feedback with integrator, Mechatronics, 19, 1294–1302.
  • 22. Uchiyama N., Ouyang H., Sano S. (2013), Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion, Mechatronics, 23, 1223–1236.
  • 23. Wu J.J. (2006), Finite element analysis and vibration testing of a three-dimensional crane structure, Measurement, 39, 740–749.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d99aa76-110c-4ced-aabe-c6e04c9ef09b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.