PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new 4-D hyperchaotic system with no equilibrium, its multistability, offset boosting and circuit simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new 4-D dynamical system with hyperchaos is reported in this work. It is shown that the proposed nonlinear dynamical system with hyperchaos has no equilibrium point. Hence, the new dynamical system exhibits hidden hyperchaotic attractor. An in-depth dynamic analysis of the new hyperchaotic system is carried out with bifurcation transition diagrams, multistability analysis, period-doubling bubbles and offset boosting analysis. Using Integral Sliding Mode Control (ISMC), global hyperchaos synchronization results of the new hyperchaotic system are described in detail. Furthermore, an electronic circuit realization of the new hyperchaotic system has been simulated in MultiSim software version 13.0 and the results of which are in good agreement with the numerical simulations using MATLAB.
Rocznik
Strony
575--597
Opis fizyczny
Bibliogr. 50 poz., rys., wykr., wzory
Twórcy
  • DSchool of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  • Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Oxford Ox2 6GG, UK
autor
  • Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
Bibliografia
  • [1] V. T. Pham, S. Vaidyanathan, C. Volos and T. Kapitaniak: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors, Berlin, Springer, 2018.
  • [2] J. C. Antoranz and M. A. Rubio: Hyperchaos in a simple model for a laser with a saturable absorber, Journal of the Optical Society of America B: Optical Physics, 5(5) (1988), 1070–1073.
  • [3] E. M. Shahverdiev and K. A. Shore: Time-delay hyperchaos synchronisation and implications for laser diodes subject to optical feedback, IEE Proceedings: Optoelectronics, 148(1) (2001), 46–48.
  • [4] A. Y. Shvets and T. S. Krasnopolskaya: Hyperchaos in piezoceramic systems with limited power supply, Solid Mechanics and its Applications, 6 (2008), 313–322.
  • [5] X. Q. Feng and K. Shen: Controlling hyperchaos in a system of degenerate optical parametric oscillators by means of resonant three-wave interaction, Technical Physics Letters, 33(7) (2007), 578–580.
  • [6] L. Borkowski: Dynamice of three unidirectionally coupled duffing oscillators, Mechanics and Mechanical Engineering,15(2) (2011), 125–132.
  • [7] J. S. A. Eyebe Fouda and S. L. Sabat: A multiplierless hyperchaotic system using coupled Duffing oscillators, Communications in Nonlinear Science and Numerical Simulation, 20(1) (2015), 24–31.
  • [8] E. V. Blokhina and A. G. Rozhnev: Chaos and hyperchaos in a gyrotron, Radiophysics and Quantum Electronics, 49(10) (2006), 799–810.
  • [9] A. Gokyildirim, Y. Uyaroglu and I. Pehlivan: A weak signal detection application based on hyperchaotic Lorenz system, Tehnicki Vjesnik, 25(3) (2018), 701–708.
  • [10] K. Rajagopal, A. Karthikeyan and P. Duraisamy: Difference equations of a memristor higher order hyperchaotic oscillator, African Journal of Science, Technology, Innovation and Development, 10(3) (2018), 279–285.
  • [11] F. J. Chen and J. B. Li: Hyperchaos in RTD-based cellular neural networks, International Journal of Bifurcation and Chaos, 8(11) (2008), 3439–3446.
  • [12] Y. Huang and X. S. Yang: Hyperchaos in a new family of simple CNNs, International Journal of Bifurcation and Chaos, 16(11) (2006), 3341–3348.
  • [13] S. Vaidyanathan: Hybrid chaos synchronization of 3-cells cellular neural network attractors via adaptive control method, International Journal of PharmTech Research, 8(8) (2015), 61–73.
  • [14] F. Paratesh, K. Rajagopal, A. Karthikeyan, A. Alsaedi, T. Hayat and V. T. Pham: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation, Cognitive Neurodynamics, 12(6) (2018), 607–614.
  • [15] P. Rakheja, R. Vig and P. Singh: An asymmetric hybrid cryptosystem using hyperchaotic system and random decomposition in hybrid multi resolution wavelet domain, Multimedia Tools and Applications, 78(15) (2019), 20809-20834.
  • [16] S. Hammami: Multi-switching combination synchronization of discrete-time hyperchaotic systems for encrypted audio communication, IMA Journal of Mathematical Control and Information, 36(2) (2019), 583–602.
  • [17] P. Rakheja, R. Vig, P. Singh and R. Kumar: An iris biometric protection scheme using 4D hyperchaotic system and modified equal modulus decomposition in hybrid multi resolution wavelet domain, Optical and Quantum Electronics, 51(6) (2019), Article ID 204.
  • [18] J. Liu, X. Tong, Y. Liu, M. Zhang and J. Ma: A joint encryption and error correction scheme based on chaos and LDPC, Nonlinear Dynamics, 93(3) (2018), 1149–1163.
  • [19] S. Vaidyanathan: Adaptive control of the FitzHugh-Nagumo chaotic neuron model, International Journal of PharmTech Research, 8(6) (2015), 117–127.
  • [20] S. Wang, S. He, K. Rajagopal, A. Karthikeyan and K. Sun: Route to hyperchaos and chimera states in a network of modified Hindmarsh-Rose neuron model with electromagnetic flux and external excitation, European Physical Journal: Special Topics, 229(2020), 929–942.
  • [21] S. Vaidyanathan, A. T. Azar, A. Akgul, C. H. Lien, S. Kacar and U.Cavusoglu: A memristor-based system with hidden hyperchaotic attractors, its circuit design, synchronisation via integral sliding mode control andan application to voice encryption, International Journal of Automation and Control, 13(6), (2019) 644–647.
  • [22] X. Xia, Y. Zeng and Z. Li: Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system, Pramana, 91(6) (2018), Article ID 82.
  • [23] P. D. Kamdem Kuate, Q. Lai and H. Fotsin: Complex behaviors in a new 4D memristive hyperchaotic system without equilibrium and its microcontroller-based implementation, European Physical Journal: Special Topics, 228(10) (2019), 2171–2184.
  • [24] N. V. Kuznetsov and T. Mokaev: Numerical analysis of dynamical systems: Unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension, Journal of Physics: Conference Series, 1205(1) (2019), Article ID 012034.
  • [25] S. Vaidyanathan, L. G. Dolvis, K. Jacques, C. H. Lien and A. Sambas: A new five-dimensional four-wing hyperchaotic system with hidden attractor, its electronic circuit realisation and synchronisation via integral sliding mode control, International Journal of Modelling, Identification and Control, 32(1) (2019), 30–45.
  • [26] A. Sambas, M. Mamat, S. Vaidyanathan, M. A. Mohamed, W. S. Mada Sanjaya and Mujiarto: A novel chaotic hidden attractor, its synchronization and circuit implementation, WSEAS Transactions on Systems and Control, 13 (2018), 345–352.
  • [27] S. Vaidyanathan, A. T. Azar and A. Boulkroune: A novel 4-D hyper-chaotic system with two quadratic nonlinearities and its adaptive synchronisation, International Journal of Automation and Control, 12(1) (2018), 5–26.
  • [28] S. Vaidyanathan: Adaptive integral sliding mode controller design for the regulation and synchronization of a novel hyperchaotic finance system with a stable equilibrium, Studies in Computational Intelligence, 709(2017), 289–318.
  • [29] N. V. Kuznetsov, T. N. Mokaev, E. V. Kudryashova, O. A. Kuznetsova, R. N. Mokaev, M. V. Yuldashev and R. V. Yuldashev: Stability and chaotic attractors of memristor-based circuit with a line of equilibria, Lecture Notes in Electrical Engineering, 554(2020), 639–644.
  • [30] S. Fang, Z. Li, X. Zhang and Y. Li: Hidden extreme multistability in a novel no-equilibrium fractional-order chaotic system and its synchronization control, Brazilian Journal of Physics, 49(6) (2019), 846–858.
  • [31] X. Li and Z. Li: Hidden extreme multistability generated from a fractional-order chaotic system, Indian Journal of Physics, 93(12) (2019), 1601–1610.
  • [32] E. F. Doungmo Goufo: On chaotic models with hidden attractors in fractional calculus above power law, Chaos, Solitons and Fractals, 127(2019), 24–30.
  • [33] X. Zhang and Z. Li: Hidden extreme multistability in a novel 4D fractional-order chaotic system, International Journal of Non-Linear Mechanics, 111(2019), 14–27.
  • [34] A. Bayani, K. Rajagopal, A. J. M. Khalaf, S. Jafari, G. D. Leutchi and J. Kengne: Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting, Physics Letters, Section A: General, Atomic and Solid State Physics, 383(13) (2019), 1450–1456.
  • [35] C. Y. Chen, K. Rajagopal, I. I. Hamarash, F. Nazarimehr, F. E. Alsaadi and T. Hayat: Antimonotonicity and multistability in a fractional order memristive chaotic oscillator, European Physical Journal: Special Topics, 228(10) (2019), 1969–1981.
  • [36] Y. Zhang, Z. Liu, H. Wu, S. Chen and B. Bao: Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis, Chaos, Solitons and Fractals, 127 (2019), 354–363.
  • [37] I. Ahmad, B. Srisuchinwong and W. San-Um: On the first hyperchaotic hyperjerk system with no equilibria: A simple circuit for hidden attractors, IEEE Access, 6 (2018), 35449–35456.
  • [38] M. Wang, X. Liao, Y. Deng, Z. Li, Y. Su and Y. Zeng: Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors, Chaos, Solitons and Fractals, 130(2020), Article ID 109406.
  • [39] S. Vaidyanathan: Output regulation of Arneodo-Coullet chaotic system, Communications in Computer and Information Science, 133 (2011), 98–107.
  • [40] S. Vaidyanathan: Output regulation of the unified chaotic system, Communications in Computer and Information Science, 198 (2011), 1–9.
  • [41] S. Vaidyanathan: Adaptive control and synchronization design for the Lu-Xiao chaotic system, Lecture Notes in Electrical Engineering, 131 (2013), 319–327.
  • [42] S. Vaidyanathan: Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method, International Journal of PharmTech Research, 8(6) (2015), 156–166.
  • [43] S. Vaidyanathan: Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor, International Journal of PharmTech Research, 8(5), (2015), 956–963.
  • [44] Y. Li, B. Yang, X. Zhang, Q. Wu and T. Zheng: Extended state observer-based intelligent double integral sliding mode control of electronic throttle valve, Advances in Mechanical Engineering, 9(12) (2017), 1–10.
  • [45] A. Chibani, B. Daaou, A. Gouichiche, A. Safia and Y. Messlem: Finite-time integral sliding mode control for chaotic permanent magnet synchronous motor systems, Archives of Electrical Engineering, 66(2) (2017), 229–239.
  • [46] N. V. Stankevich, O. V. Astakhov, A. P. Kuznetsov and E. P. Seleznev: Exciting chaotic and quasi-periodic oscillations in a multicircuit oscillator with a common control scheme, Technical Physics Letters, 44(5) (2018), 428–431.
  • [47] S. Vaidyanathan, M. Feki, A. Sambas and C. H. Lien: A new biological snap oscillator: Its modelling, analysis, simulations and circuit design, International Journal of Simulation and Process Modelling, 13(5) (2018), 419–432.
  • [48] V. T. Pham, S. Jafari, S. Vaidyanathan, C. Volos and X. Wang: A novel memristive neural network with hidden attractors and its circuitry implementation, Science China Technological Sciences, 59(3) (2016), 358–363.
  • [49] W. Zhou, G. Wang, H. H. C. Lu, Y. Shen and Y. Liang: Complex dynamics of a non-volatile memcapacitor-aided hyperchaotic oscillator, Nonlinear Dynamics, 100(4) (2020), 3937–3957.
  • [50] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano: Determining Lyapunov exponents from a time series, Physica D, 16(1985), 285–317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d9747fe-abf9-4cd6-9552-fea00240c456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.