PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Atterberg Limits of Eemian Gyttja on Samples With Different Composition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of laboratory tests of plastic limit wp and liquid limit wL of Eemian gyttja characterized by different organic matter content Iom and calcium carbonate content CaCO3. Comparison of the liquid limit wL determined with the use of the Casagrande apparatus wLC and a cone penetrometer with cones having apex angles of 60° wL60 and 30° wL30 is shown. Based on statistical analysis of the test results, single- and two-factor empirical relationships for evaluating the plastic limit wP and liquid limit wL of Eemian gyttja depending on the organic matter content Iom and/or calcium carbonate content CaCO3 are presented in this study.
Wydawca
Rocznik
Strony
168--178
Opis fizyczny
Bibliogr. 48 poz., tab., rys.
Twórcy
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw
  • Institute of Civil Engineering and Transport, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • [1] ANDRADE F.A., AL-QURESHI H.A., HOTZA D. 2011. Measuring the plasticity of clays: A review. App. Clay Sci., 51, 1–7.
  • [2] ATTERBERG S.K. 1911. Über die physikalische Bodenuntersuchung und über die Plastizität der Tone. Internationale Mitteilungen für Bodenkunde (in German), 1, 10-43.
  • [3] BUDHU M. 1985. The effect of clay content on the liquid limit from a fall cone and British cup device. Geotech. Testing J., 8(2), 91–95.
  • [4] CASAGRANDE A. 1932. Research on the Atterberg limits of soils. Public Roads, 13(8), 121-136.
  • [5] DE JONG E., ACTON D.F., STONEHOUSE H.B. 1990. Estimating the Atterberg limits of southern Saskatchewan soils from texture and carbon contents. Can. J. Soil Sci., 70, 543-554.
  • [6] DI MATTEO L. 2012. Liquid limit of low- to medium-plasticity soils: comparison between Casagrande cup and cone penetrometer test. Bulletin of Engineering Geology and the Environment, 71, 79-85.
  • [7] DŁUGASZEK M. 1988. Ocena właściwości fizyczno-mechanicznych gytii Pojezierza Olsztyńskiego dla potrzeb inżyniersko-geologicznych. (Assessment of physico-mechanical properties of the gyttja of the Olsztyn Lakeland for engineering-geological purposes), PhD Thesis. Geology Faculty, Warsaw University (manuscript, in Polish), Warsaw.
  • [8] DŁUGASZEK M. 1991. Charakterystyka konsystencji gytii badanej aparatem Casagrande’a i stożkiem Wasiliewa (Characteristics of gyttja consistency tested with both the Casagrande’s apparatus and the Vasiliev’s cone methods). Acta Academiae Agriculturae AC Technicae Olstenensis (Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie), Aedificatio et Mechanica, 22, 253-263 (in Polish).
  • [9] DŁUGASZEK M. 1991. Wpływ zawartości substancji organicznej na gęstość właściwą i gęstość objętościową gytii (The effect of organic content on the specific density and bulk density of gyttja). Acta Academiae Agriculturae AC Technicae Olstenensis (Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie), Aedificatio et Mechanica, 22, 265-276 (in Polish).
  • [10] DOLINAR B., TRAUNER L. 2005. Impact of soil compression on fall cone test results. J. Geotech. Geoenviron. Eng., 131(1), 126-130.
  • [11] DRAPER N.R., SMITH H. 1998. Applied regression analysis. Third Edition, Wiley: New York.
  • [12] EN 1997-1:2008. Eurocode 7. Geotechnical design. Part 1: General rules.
  • [13] EN 1997-2:2009. Eurocode 7. Geotechnical design. Part 2: Ground investigation and testing.
  • [14] EN ISO/TS 17892-12:2004. Geotechnical investigation and testing. Laboratory testing of soil. Part 12: Determination of Atterberg limits.
  • [15] GOŁAWSKA K. 2020. Analiza pełzania gytii eemskiej w złożonych stanach naprężenia. (Creep behaviour of Eemian gyttja under complex stress states). PhD Thesis. Warsaw University of Life Sciences – SGGW (manuscript, in Polish).
  • [16] GRØNBECH G.L., NIELSEN B.N., IBSEN L.B. 2011. Comparison of liquid limit of highly plastic clay by means of Casagrande and fall cone apparatus. 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Canada, ON, 7 pp.
  • [17] HAIGH S.K. 2012. Mechanics of the Casagrande liquid limit test. Can. Geotech. J., 49, 1015-1023.
  • [18] HANSBO, S. 1957. A new approach to the determination of the shear strength of clay by the fall cone test. Swedish Geotechnical Institute Proceedings, 14, 5–47.
  • [19] KARLSSON R. 1977. Consistency limits: A manual for the performance and interpretation of laboratory investigations. Swed Counc Bldg Res, Part 6, Document D6, 40 pp.
  • [20] KOLLAROS G. 2016. Liquid limit values obtained by different testing methods. Bulletin of the Geological Society of Greece, 1, 2, 778-787.
  • [21] KOUMOTO T., HOULSBY G.T. 2001. Theory and practice of the fall cone test. Géotechnique, 8, 701-712.
  • [22] LARSSON R. 1990. Behaviour of organic clay and gyttja. Swedish Geotechnical Institute. Report No. 38.
  • [23] LECHOWICZ Z., BAJDA M., RABARIJOELY S., SKUTNIK Z. 2012. Determination of mechanical parameters in organic soils for design of retaining walls. 12th Baltic Sea Geotechnical Conference “Infrastructure in the Baltic Sea Region”, Rostock, Germany, (CD 133-139).
  • [24] LECHOWICZ Z., BAJDA M., RABARIJOELY S., WRZESIŃSKI G. 2014. Use of SDMT for the evaluation of the geotechnical parameters of organic soils. Monograph eds by Z. Młynarek & J. Wierzbicki, Poznań, Wydawnictwo Exemplum, 107-118.
  • [25] LECHOWICZ Z., GOŁAWSKA K., WRZESIŃSKI G., SULEWSKA M. 2019. Evaluation of creep behaviour of organic soils in a torsional shear hollow cylinder test. Proc. XVII European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik, Iceland, doi: 10.32075/17ECSMGE-2019-0338.
  • [26] O’KELLY B.C. 2015. Atterberg limits are not appropriate for peat soils. Geotechnical Research, 2(3), 123-134.
  • [27] O’KELLY B.C., VARDANEGA P.J., HAIGH S.K. 2018. Use of fall cones to determine Atterberg limits: a review. Géotechnique, 68, 10, 843-856.
  • [28] MATUSIEWICZ W., LECHOWICZ Z., WRZESIŃSKI W. 2016. Wyznaczanie granicy płynności wL metodą Casagrandego i penetrometrem stożkowym (Determination of liquid limit by Casagrande method and cone penetrometer). Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 25(3), 290–300 (in Polish).
  • [29] MENDOZA M.J., OROZCO M. 2001. Quick and reliable procedure for liquid limit determination of fine-grained soils. Geotech. Testing J., 24, 1, 103-108.
  • [30] MISHRA A.K., OHTSUBO M., LI L.Y., HIGASHI T. 2012. Influence of various factors on the difference in the liquid limit values determined by Casagrande’s and fall cone method. Environmental Earth Sciences, 65, 21-27.
  • [31] PIETRZYKOWSKI P. 2014. Charakterystyka geologiczno-inżynierska eemskich gytii i kredy jeziornej z terenu Warszawy (Engineering-geological characteristics of Eemian gyttja and lacustrine marl from Warsaw site). PhD Thesis. Geology Faculty, Warsaw University (manuscript, in Polish), Warsaw, Poland.
  • [32] PN-B-04481:1988. Grunty budowlane. Badania próbek gruntu (Building soils. Laboratory tests).
  • [33] PRAKASH K., SRIDHARAN A. 2006. Critical appraisal of the cone penetration method of determining soil plasticity. Can. Geotech. J., 43, 884-888.
  • [34] SCHMITZ R.M., SCHROEDER C., CHARLIER R. 2004. Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits. App. Clay Sci., 26, 351-358.
  • [35] SEYBOLD C.A., ELRASHIDI M.A., ENGEL R.J. 2008. Linear regression models to estimate soil liquid limit and plasticity index from basic soil properties. Soil Science, 173, 1, 25-34.
  • [36] SHIMOBE S. 2010. Determination of index properties and undrained shear strength of soils using the fall cone test. Proc. 7th International Symposium on Lowland Technology, Saga, Japan, 51-59.
  • [37] STATISTICA - package documentation. Polish Edition 2002 by StatSoft Polska Ltd. (in Polish).
  • [38] STANISZ A., Accessible statistics course using STATISTICA PL on the examples of medicine. Vol. 1, StatSoft Polska Ltd. Cracow 2006, Poland (in Polish).
  • [39] STANISZ A., Accessible statistics course using STATISTICA PL on the examples of medicine. Vol. 2, StatSoft Polska Ltd. Cracow 2007, Poland (in Polish).
  • [40] VARDANEGA P.J., HAIGH S.K. 2014. The undrained strength – liquidity index relationship. Can. Geotech. J., 51, 1073-1086.
  • [41] VARDANEGA P.J., O’KELLY B.C., HAIGH S.K., SHIMOBE S. 2018. Classifying and characterizing fine-grained soils using fall cones. Proc. XVI Danube-European Conference on Geotechnical Engineering, Skopje, Macedonia, 2, 821-826.
  • [42] WASTI Y. 1987. Liquid and plastic limits as determined from the fall cone and the Casagrande methods. Geotech. Testing J., 10, 1, 26-30.
  • [43] WASTI Y., BEZIRCI M.H. 1986. Determination of the consistency limits of soils by the fall cone test. Can. Geotech. J., 23, 241- 246.
  • [44] WOLSKI W., HARTLEN J. (Eds) 1996. Embankments on organic soils. Elsevier, vol. 80.
  • [45] WOLSKI W., SZYMAŃSKI A., MIRECKI J., LECHOWICZ Z., LARSSON R., HARTLEN J., GARBULEWSKI K., BERGDAHL U. 1988. Two stage constructed embankments on organic soils. Swedish Geotechnical Institute. Report No. 32, Linköping, Sweden.
  • [46] WROTH C.P., WOOD D.M. 1978. The correlation of index properties with some basic engineering properties of soils. Can. Geotech. J., 15(2), 137–145.
  • [47] ZENTAR R., ABRIAK N.-E., DUBOIS V. 2009. Fall cone test to characterize shear strength of organic sediments. J. Geotech. Geoenviron. Eng., 135, 1, 153-157.
  • [48] ZENTAR R., ABRIAK N.-N., DUBOIS V. 2009. Effect of salts and organic matter on Atterberg limits of dredged marine sediments. App. Clay Sci., 42, 3-4, 391-397.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d95aac6-e830-49e0-afef-b2ba3c9084a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.