PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decentralized PID control by using GA optimization applied to a quadrotor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quadrotors represent an effective class of aerial robots because of their abilities to work in small areas. We suggested in this research paper to develop an algorithm to control a quadrotor, which is a nonlinear MIMO system and strongly coupled, by a linear control technique (PID), while the parameters are tuned by the Genetic Algorithm (GA). The suggested technique allows a decentralized control by decoupling the linked interactions to effect angles on both altitude and translation position. Moreover, the using a meta-heuristic technique enables a certain ability of the system controllers design without being limited by working on just the small angles and stabilizing just the full actuated subsystem. The simulations were implemented in MATLAB/Simulink tool to evaluate the control technique in terms of dynamic performance and stability. Although the controllers design (PID) is simple, it shows the effect of the proposed technique in terms of tracking errors and stability, even with large angles, subsequently, high velocity response and high dynamic performances with practically acceptable rotors speed.
Twórcy
  • Energy Systems Modeling Laboratory (LMSE), Electrical Engineering Department; University of Biskra, BP 145 RP, 07000, Biskra, Algeria
autor
  • Identification, Command, Control and Communication Laboratory (LI3CUB), Electrical Engineering Department; University of Biskra, BP 145 RP, 07000, Biskra, Algeria
Bibliografia
  • [1] J.J. Xiong, E.H. Zheng, “Position and attitude tracking control for quadrotor UAV”, ISA Trans., vol. 53, 2014, 725–731. DOI: 10.1016/j.isatra.2014.01.004.
  • [2] S. Bouabdallah, Design and control of quadrotors with application to autonomous flying, PhD thesis, EPFL, Switzerland, 2007.
  • [3] H. Elkholy, Dynamic modeling and control of a quadrotor using linear and nonlinear approaches, Master thesis, American university in Cairo, Egypt, 2014.
  • [4] Z. Jia, J. Yu,Y. Mei et al., “Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances”, Aerosp. Sci. Technol., vol. 68, 2017, 299–307. DOI: 10.1016/j.ast.2017.05.022.
  • [5] F. Chen, K. Zhang, Z. Wang et al., “Trajectory tracking of a quadrotor with unknown parameters and its fault-tolerant control via sliding mode fault observer”, Proc. IMechE Part I: J Systems and Control Engineering, 229, 2015, 279–292. DOI:10.1177/0959651814566040.
  • [6] Y. Yang, Y. Yan, “Attitude regulation for unmanned quadrotors using adaptive fuzzy gain--scheduling sliding mode control”, Aerosp. Sci. Technol., vol. 54, 2016, 208–217. DOI: 10.1016/j.ast.2016.04.005
  • [7] H. Lu, C. Liu, M. Coombes et al., “Online optimisation-based backstepping control design with application to quadrotor”, IET Control Theory Appl., vol. 10, 2016, 1601–1611. DOI: 10.1049/iet-cta.2015.0976.
  • [8] D. Ma, Y. Xia, T. Li et al., “Active disturbance rejection and predictive control strategy for a quadrotor helicopter”, IET Control Theory Appl.,vol. 10, 2016, 2213–2222. DOI: 10.1049/iet--cta.2016.0125.
  • [9] K. Alexis, G. Nikolakopoulos, A. Tzes, “Model predictive quadrotor control: attitude, altitude and position experimental studies”, IET Control Theory Appl., vol. 6, 2012, 1812–1827. DOI: 10.1049/iet-cta.2011.0348.
  • [10] P. Zarafshan, S.B. Moosavian, S.A.A. Moosavian et al., “Optimal Control of an Aerial Robot”. In: Proc. of the 2008 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Xi’an, China, 2008, 1284–1289. DOI: 10.1109/AIM.2008.4601847.
  • [11] P. Zarafshan, S.A.A. Moosavian, M. Bahrami,“Comparative controller design of an aerial robot”, Aerosp. Sci. Technol., vol. 14, 2010, 276–282.DOI: 10.1016/j.ast.2010.01.001.
  • [12] S. Bouabdallah, A. Noth, R. Siegwart, “PID vs LQ Control Techniques Applied to an indoor micro quadrotor”. In: Proc. of IEEE/RSJ Int. Conf. on intelligent robots and systems, Sendal, Japan, 2004, 2451–2456. DOI:10.1109/IROS.2004.1389776.
  • [13] B. Kada, Y. Ghazzawi, “Robust PID Controller Design for an UAV Flight Control System”. In: Proc. of the World Congress on Engineering and Computer Sci., vol. II, San Francisco, USA, 2011.
  • [14] S.J. Haddadi, P. Zarafshan, “Attitude Control of an Autonomous Octorotor”, In: Proc. of the 2nd
  • RSI/ISM Int. Conf. on Robotics and Mechatronics, Tehran, Iran, 2014, 540–545. DOI: 10.1109/ICRoM.2014.6990958.
  • [15] Q. Quan, G.X. Du, K.Y. Cai, “Proportional-Integral Stabilizing Control of a Class of MIMO Systems Subject to Nonparametric Uncertainties by Additive-State-Decomposition Dynamic Inversion Design”, IEEE/ASME Trans.Mech., vol. 21, 2016, 1092–1101. DOI: 10.1109/TMECH.2015.2497258.
  • [16] N. Cao, A.F. Lynch, “Inner-Outer Loop Control for Quadrotor UAVs With Input and State Constraints”, IEEE Trans. Contr. Syst. Technol.,vol. 24, 2016, 1797–1804. DOI: 10.1109/TCST.2015.2505642.
  • [17] L. Carrillo, A. Lopez, R. Lozano et al., Quad Rotorcraft Control, London: Springer-Verlag, 2013.
  • [18] J. Ghommam, N. Fethalla, M. Saad, “Quadrotor circumnavigation of an unknown moving target using camera vision-based measurements”, IET Control Theory Appl., vol. 10, 2016, 1874–1887.DOI: 10.1049/iet-cta.2015.1246.
  • [19] P.J. Fleming, R.C. Purshouse, Genetic Algorithms in Control Systems Engineering, Schiefled: Departement of Automatic Control and Systems Engineering, University of Schiefled, 2001.
  • [20] M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, New York: JohnWiley-&Sons, 2006.
  • [21] ROMANSY 21 – Robot Design, Dynamics and Control – Proceedings of the 21st CISM-IFToMM Symposium, V. Parenti-Castelli, W. Schiehlen (eds.) June 20–23, 2016. Udine, Italy, Springer.
  • [22] K.J. Astrom, T. Hagglund, Automatic Tuning of PID Controllers, Pennsylvania: Instrument Society of America, 1988.
  • [23] M.S. Mahmoud, Decentralized Systems with Design Constraints, London: Springer-Verlag, 2011.
  • [24] M. Hovd, S. Skogestad, “Sequential Design of Decentralized Controllers”, Automatica, vol. 30, 1994, 1601–1607. DOI: 10.1016/0005-1098(94)90099-X.
  • [25] X. Dai, L. Jiang, Y. Zhao, “Cooperative exploration based on supervisory control of multi-robot systems”, Appl. Intell., vol. 45, 2016, 18–29. DOI:10.1007/s10489-015-0741-3.
  • [26] E. Cuevas, A. Luque, D. Zaldívar et al., “Evolutionary calibration of fractional fuzzy controllers”, Appl. Intell., vol. 47, 2017, 291–303. DOI:10.1007/s10489-017-0899-y.
  • [27] M.S. Saad, H. Jamaluddin, I.Z.M. Darus, “Implementation of PID Controller Tuning Using Differential Evolution and Genetic Algorithms”, Int.J. of Innovative Computing, Information and Control, vol. 8, 2012, 7761–7779.
  • [28] J.S. Wang, C.X. Ning, Y. Yang, “Multivariable PID Decoupling Control Method of Electroslag Remelting Process Based on Improved Practical Swarm Optimisation (PSO) Algorithm”, Information, vol. 5, 2014, 120–133. DOI: 10.3390/info5010120.
  • [29] K. Rajarathinam, J.B. Gomm, D.L. Yu et al., “PID Controller Tuning for a Multivariable Glass Furnace Process by Genetic Algorithm”, Int. J of Automation and Computing, vol. 13, 2016, 64–72. DOI: 10.1007/s11633-015-0910-1.
  • [30] J.H. Holland, Adaptation in Natural and Artificial Systems, Massachusetts: MIT Press, 1992.
  • [31] B.K. Yeo, Y. Lu, “Array Failure Correction with a Genetic Algorithm”, IEEE Trans. on Antennas and Propagation, vol. 47, 1999, 823–828. DOI: 10.1109/8.774136.
  • [32] L. Abdou, F. Soltani, “OS-CFAR and CMLD Threshold Optimization with Genetic Algorithms”. In: Proc. of 3rd Int. Conf. on Systems, Signals &Devices, vol. III Communication and Signal Processing, Sousse, Tunisia, 2005.
  • [33] A. Wright, Genetic Algorithms for Real Parameter Optimization, San Mateo, California: Morgan Kaufmann, 1991.
  • [34] A. Alkamachi, E. Erçelbi, “Modelling and Genetic Algorithm Based-PID Control of H-Shaped Racing Quadcopter”, Arab J. Sci. Eng., vol. 42, 2017, 2777–2786. DOI: 10.1007/s13369-017-2433-2.
  • [35] Y. Zou, “Trajectory tracking controller for quadrotors without velocity and angular velocity measurements”, IET Control Theory Appl., vol. 11, 2017, 101–109. DOI: 10.1049/iet--cta.2016.0647.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d8de09a-927d-45b1-afa8-359cc124a7a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.