PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initiation Capacity of a New Booster Pellet

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Insensitive munitions improve the survivability of both weapons and their associated platforms. All weapon systems contain an explosive train which needs to meet the insensitive munitions criteria but also to reliably initiate the main charge explosive. The traditional cylindrical booster pellet has insufficient energy output to reliably initiate an insensitive main charge explosive. To ensure that this requirement can be achieved, a new highly effective booster charge structure was designed. New booster pellets of four different sizes were investigated by numerical simulation and the one with the most powerful output was selected for experimental study. The results show that the new booster pellet has more initiation capacity than a cylindrical booster pellet with the same mass and pressed density. The convergence pressure of the new booster pellet is much higher than that of a cylindrical booster pellet with the same density.
Rocznik
Strony
157--170
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Chemical Industry and Ecology College, North University of China, Taiyuan, Shanxi 030051, P.R. China
autor
  • Chemical Industry and Ecology College, North University of China, Taiyuan, Shanxi 030051, P.R. China
autor
  • Chemical Industry and Ecology College, North University of China, Taiyuan, Shanxi 030051, P.R. China
Bibliografia
  • [1] Department of Defense Test Method Standard: Hazard Assessment Tests for Non- Nuclear Munitions, MIL-STD-2105B, Department of Defense, 1994.
  • [2] Flegg G.T., Frankl P.J., Griffiths T.T., Explosive Train Scale Shock Testing of New Energetic Materials, QinetiQ, Fort Halstead, Sevenoaks, Kent, TN14 7BP, UK, 2010.
  • [3] Spahn P.F., Booster Explosive Ring, US Patent 5233929, 1993.
  • [4] Spahn P.F., Embedded Can Booster, US Patent 5221810, 1993.
  • [5] Dallman J.C., Measurements of Detonation-Wave Spreading and Local Particle Velocity at the Surface of 17-mm LX-07 Hemispherical Boosters, Report No. LA- 11414-MS, Los Alamos National Laboratory, 1988.
  • [6] Hu L.S., Hu S.Q., Cao X., Study on the Initiation Capacities of Two Booster Pellets, Cent. Eur. J. Ener. Mater., 2012, 9, 261-272.
  • [7] Lee E.L., Hornig H.C., Kury J.W., Adiabatic Expansion of High Explosive Detonation Products, Report No. UCRL-50422, Lawrence Livermore National Laboratory, Livermore, CA, 1968.
  • [8] Alia A., Souli M., High Explosive Simulation Using Multi-Material Formulations, Applied Thermal Engineering, 2006, 26, 1032-1042.
  • [9] Johnson G.R., Cook W.H., Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, 31-48.
  • [10] Li Y., Experiment of Booster Shock Initiation and Its Numerical Simulation (in Chinese), North University of China, China, 2010.
  • [11] Foan G.C., Coley G.D., Shock Initiation in Gap Test Configuration, 7th Int. Symposium on Detonation, Acr-221, Office of Naval Research, Arlington, VA, 1976.
  • [12] Cao X., Study on the Structure of High-Effect-Booster Charge and Numerical Simulation on Its Initiation Process (in Chinese), North University of China, China, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d8cbd4c-50d3-44e9-a5bc-113aaf296e67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.