PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Arc Strikes on High Strength Low Alloy Steels Welded by SMAW

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wet welding with covered electrodes (Shielded Metal Arc Welding-SMAW) is the most commonly used method of carrying out welding repair works in a water environment. Limited visibility and the inability to move freely under water result in an increased risk of formation of welding imperfections such as lack of fusion, lack of penetration and arc strikes. The work focused on changes in the properties and structure of steel subjected to the impact of short (0.2 s) arc ignitions generated by covered electrodes in air and under water for three high strength steel grades: S460N, S460M and S500MC. Visual tests, macroscopic and microscopic metallographic tests, microhardness measurements and diffusible hydrogen content in deposited metal determination were performed. A significant influence of the environment on changes in the morphology and microhardness of steel in the vicinity of arc strikes was found. The microhardness of the areas covered by the rapid thermal cycle caused by SMAW increased from 200-230 HV0.5 to 400-500 HV0.5 depending on the steel grade. The presence of welding imperfections: cavities and cracks were detected. The susceptibility of all steel grades subjected to short thermal cycles to cracking was confirmed by the results of measurements of the diffusible hydrogen content: 38.6 ml/100g and 84.5 ml/100 g for air and water environment, respectively. No influence of changes in the welding current on the behavior of the material in the tested conditions was found. The conducted research shows that leaving arc strikes on the structure may have serious consequences and cause a failure.
Twórcy
  • Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • S.N.SINEMA, ul. Opata Hackiego 8-10, 81-213 Gdynia, Poland
  • Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Mitelea I., Bordeaşu I., Cosma D., Uțu I.D., Crăciunescu C.M. Microstructure and Cavitation Damage Characteristics of GX40CrNiSi25-20 Cast Stainless Steel by TIG Surface Remelting. Materials 2023, 16(4): 1423.
  • 2. Brätz O., Henkel K.M. Investigations on the microstructure of drawn arc stud welds on structural steels by quantitative metallography. Welding in the World 2023, 67(1): 195-208.
  • 3. Świerczyńska A. Effect of storage conditions of rutile flux cored welding wires on properties of welds. Advances in Materials Science 2019, 19(4): 46-56.
  • 4. Samadi F., Mourya J., Wheatley G., Khan M.N., Nejad R.M., Branco R., Macek, W. An investigation on residual stress and fatigue life assessment of T- shape welded joints. Engineering Failure Analysis 2022, 141: 106685.
  • 5. Szymczak T., Szczucka-Lasota B., Węgrzyn T., Łazarz B., Jurek A. Behavior of weld to S960MC high strength steel from joining process at microjet cooling with critical parameters under static and fatigue loading. Materials 2021, 14(11): 2707.
  • 6. Mičian M., Winczek J., Harmaniak R., Koňár R., Gucwa M., Moravec J. Physical simulation of individual heat-affected zones in S960MC steel. Archives of Metallurgy and Materials 2021, 66(1): 81-89.
  • 7. Wegrzyn T. The classification of metal weld deposits in terms of the amount of oxygen. Proceedings of the Ninth International Offshore and Polar Engineering Conference, Brest, France, 1999.
  • 8. Moreno-Uribe A.M., Bracarense A.Q., Pessoa E.C. The effect of polarity and hydrostatic pressure on operational characteristics of rutile electrode in underwater welding. Materials 2020, 13(21): 5001.
  • 9. Fajt D., Maślak M., Stankiewicz M., Zajdel P., Pańcikiewicz K. Influence of Long-Term Subcritical Annealing on the Unalloyed Steel Welded Joint Microstructure. Materials 2023, 16(1): 304.
  • 10. Liu S., Ji H., Zhao W., Hu C., Wang J., Li H., Wang J, Lei Y. Evaluation of Arc Signals, Microstructure and Mechanical Properties in Ultrasonic-Frequency Pulse Underwater Wet Welding Process with Q345 Steel. Metals 2022, 12(12): 2119.
  • 11. Zhang X., Guo N., Luo W., Xu C., Tan Y., Fu Y., Cheng Q., Chen H., He J. A novel liquid-shielded welding solution for diffusible hydrogen content restriction and metal transfer controlling in underwater FCAW condition. International Journal of Hydrogen Energy 2022, 47(11): 7362-7367.
  • 12. Tomków J., Świerczyńska A., Landowski M., Wolski A., Rogalski G. Bead-on-plate underwater wet welding on S700MC steel. Advances in Science and Technology Research Journal 2021, 15: 288-296.
  • 13. Tomków J., Landowski M., Fydrych D., Rogalski G. Underwater wet welding of S1300 ultra-high strength steel. Marine Structures 2022, 81, 103120.
  • 14. Guo N., Zhang X., Xu C., Chen H., Fu Y., Cheng Q. Effect of parameters change on the weld appearance in stainless steel underwater wet welding with flux-cored wire. Metals 2019, 9(9): 951.
  • 15. Yang J., Xu S., Jia C., Han Y., Maksymov S., Wu C. A novel 3D numerical model coupling droplet transfer and arc behaviors for underwater FCAW. International Journal of Thermal Sciences 2023, 184: 107906.
  • 16. Klett J., Hassel T. Influence of stick electrode coating’s moisture content on the diffusible hydrogen in underwater wet shielded metal arc welding. Advances in Materials Science 2020, 20(4): 27-37.
  • 17. Węgrzyn T., Szymczak T., Szczucka-Lasota B., Łazarz B. MAG welding process with micro-jet cooling as the effective method for manufacturing joints for S700MC Steel. Metals 2021, 11(2): 276.
  • 18. Brzeskot P., Łatka L. Development of the automatic method of detection and grouping of external welding imperfections. Journal of Physics: Conference Series 2022, 2412(1): 012012).
  • 19. Tomków J., Landowski M., Rogalski G. Application possibilities of the S960 steel in underwater welded structures. Facta Universitatis, Series: Mechanical Engineering 2022, 20(2): 199-209.
  • 20. Djatmiko R.D., Kurniawan D.A., Pratiwi H. Visual inspection on shielded metal arc welding products of Asian welding contestants in Yogyakarta province. Journal of Physics: Conference Series 2020, 1446(1): 012006.
  • 21. Kohandehghan A., Prescott J., Gues, S., Lepine S. An engineering assessment methodology to evaluate arc burns. International Pipeline Conference, American Society of Mechanical Engineers, online 2020, 84447, V001T03A021.
  • 22. Singh S., Singh A.B., Kumar M., Meena M.L., Dangayach G.S. Dissimilar metal welds used in AUSC power plant, fabrication and structural integrity is- sues. IOP Conference Series: Materials Science and Engineering 2021, 1017(1): 012022.
  • 23. Bhanu V., Gupta A., Pandey C. Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants-a state of the art. review. Nuclear Engineering and Technology 2022, 54(8): 2755–2770.
  • 24. Kasen M.B. Significance of blunt faws in pipeline girth welds. Welding Journal 1983, 62(5): 117-122.
  • 25. Natarajan T.J., McCauley R.B. Arc strikes on highstrength steels. Welding Journal 1975, 54(12): 879-884.
  • 26. Gagg C.R., Lewis P.R. In-service fatigue failure of engineered products and structures – Case study review. Engineering Failure Analysis 2009, 16(6): 1775-1793.
  • 27. Żuk M., Górka J., Dojka R., Czupryński A. Repair welding of cast iron coated electrodes. IOP Conference Series: Materials Science and Engineering 2017, 227(1): 012139.
  • 28. Łabanowski J., Prokop-Strzelczyńska K., Rogalski G., Fydrych D. The effect of wet underwater welding on cold cracking susceptibility of duplex stainless steel. Advances in Materials Science 2016, 16(2): 68-77.
  • 29. Hu Y., Shi Y., Wang K., Huang J. Effect of Heat Input on the Microstructure and Mechanical Properties of Local Dry Underwater Welded Duplex Stainless Steel. Materials 2023, 16(6): 2289.
  • 30. Rhode M., Nietzke J., Mente T., Richter T., Kannengiesser T. Characterization of hydrogen diffusion in offshore steel S420G2+ M multi-layer submerged arc welded joint. Journal of Materials Engineering and Performance 2022, 31(9): 7018-7030.
  • 31. Chao J., Pena C. Effect analysis of an arc-strike- induced defect on the failure of a post-tensioned threadbar. Case Studies in Engineering Failure Analysis 2016, 5-6(4): 1-9.
  • 32. Tomków J., Łabanowski J., Fydrych D., Rogalski G. Cold cracking of S460N steel welded in water environment. Polish Maritime Research 2018, 25(3 (99): 131-136.
  • 33. Tomków J., Fydrych D., Rogalski G., Łabanowski J. Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia 2019, 55(1): 140.
  • 34. Wolski A., Świerczyńska A., Lentka G., Fydrych D. Storage of high-strength steel flux-cored welding wires in urbanized areas. International Journal of Precision Engineering and Manufacturing-Green Technology 2023 (In Press).
  • 35. Wang J., Liu Y., Feng J., Sun Q. Microstructure evolution of E40 steel weldments in ultrasonic-wave- assisted underwater FCAW. Welding Journal 2021, 100: 106-120.
  • 36. Otegui J.L., Fazzini P.G., Márquez A. Common root causes of recent failures of flanges in pressure vessels subjected to dynamic loads. Engineering Failure Analysis 2009, 16(6): 1825-1836.
  • 37. Choudhury S.D., Li L., Saini N., Khan W.N., Ravikiran,K., Lyu Z. 3D characterization of internal defects for fatigue performance of welded SA192 steel water walls. International Journal of Pressure Vessels and Piping 2023, 202: 104922
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d84aff6-07e4-48e3-a2dd-85311e6a9611
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.