Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of research on the surface topography and electrical properties of ITO thin films deposited by PVD for applications in silicon photovoltaic cells. The surface condition and chemical composition were characterized using a scanning electron microscope and the thickness and optical constants were measured using a spectroscopic ellipsometer. To compare the impact of the preparation process on the properties of layers, deposition was carried out at three different temperatures: 25, 200, and 400◦C. As the temperature increased, the surface roughness changed, which correlated with the results of structural tests. The crystallite size increased from 11 to 46 nm. This, in turn, reduced the surface resistance. The electrical properties were measured using a four-point probe method and then the prepared solar cells containing ITO thin films in their structure were examined. By controlling the deposition parameters, the surface resistance of the deposited layer (26 Ohm/✷) and the efficiency of the prepared solar cells (18.91%) were optimized. Currently, ITO has the best properties for use in optoelectronics and photovoltaics among the known TCO layers. The magnetron sputtering method is widely used in many industries. Therefore, the authors predict that TCO layers can replace currently used antireflection layers and reduce the number and dimensions of front metal contacts in solar cells.
Rocznik
Tom
Strony
art. no. e150803
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering,Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Physics, Cracow University of Technology, ul. Podchor ˛azych 1, 30-084 Krakow, Poland
autor
- Institute of Materials Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Krakow, Poland
autor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec,Studentská 1402/2, 461 17 Liberec, Czech Republic
autor
- Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] R. Marks-Bielska, S. Bielski, K. Pik, and K. Kurowska, “The importance of renewable energy sources in Poland’s energy mix,” Energies, vol. 13, p. 4624, 2020, doi: 10.3390/en13184624.
- [2] A. Drygala, L.A. Dobrzański, M. Szindler, M.M. Szindler, M. Prokopiuk vel Prokopowicz, and E. Jonda, “Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon,” Int. J. Hydrog. Energy, vol. 41, no. 18, pp. 7563–7567, 2016, doi: 10.1016/j.ijhydene.2015.12.180.
- [3] S. Ranjan, S. Balaji, R.A. Panella, and B.E. Ydstie, “Silicon solar cell production” Comput. Chem. Eng., vol. 35, pp. 1439–1453, 2011, doi: 10.1016/j.compchemeng.2011.04.017.
- [4] M. Szindler, M.M. Szindler, J. Orwat, and G. Kulesza-Matlak, “The Al2O3/TiO2 double antireflection coating deposited by ALD method,” Opto-Electronics Review, vol. 30, p. e141952, 2022, doi: 10.24425/opelre.2022.141952.
- [5] G. Kulesza-Matlak et. al., “Black Silicon Obtained in Two-Step Short Wet Etching as a Texture for Silicon Solar Cells – Surface Microstructure and Optical Properties Studies,” Arch. Metall. Mater., vol. 62, pp. 1009–1017, 2018, doi: 10.24425/amm.2018.122436.
- [6] W. Filipowski, E. Wrobel, K. Drabczyk, K. Waczynski, G. Kulesza-Matlak, and M. Lipinski, “Spray-on glass solution for fabrication silicon solar cell emitter layer,” Microelectron. Int., vol. 34, no. 3, pp. 149–153, 2017, doi: 10.1108/MI-12-2016-0089.
- [7] P. Kaim, K. Lukaszkowicz, M. Szindler, M.M. Szindler, M. Basiaga, and B. Hajduk, “The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties,” Coatings, vol. 11, no. 12, p. 1507, 2021, doi: 10.3390/coatings11121507.
- [8] H. Hosono, H. Ohta, M. Orita, K Ueda, M Hirano, “Frontier of transparent conductive oxide thin films,” Vacuum, vol. 66, pp. 419–425, 2002, doi: 10.1016/S0042-207X(02)00165-3.
- [9] A. Stadlerh, “Transparent conducting oxides – An up-to-date overview,” Materials, vol. 5, pp. 661–683, 2012, doi: 10.3390/ma5040661.
- [10] H.M. Ali, H.A. Mohamed, S.H. Mohamed, “Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique,” Eur. Phys. J. Appl. Phys., vol. 31, pp. 87–93, 2005, doi: 10.1051/epjap:2005044.
- [11] M. Kuc et al. “ITO layer as an optical confinement for nitride edge-emitting lasers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 147–154, 2020, doi: 10.24425/bpasts.2020.131834.
- [12] C. Guillén and J. Herrero, “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates,” Thin Solid Films, vol. 480, pp. 129–132, 2005, doi: 10.1016/j.tsf.2004.11.040.
- [13] K. Utsumi, H. Ligusa, R. Tokumaru, P.K. Song, and Y. Shigesato, “Study on In2O3–SnO2 transparent and conductive films prepared by d.c. sputtering using high density ceramic targets,” Thin Solid Films, vol. 445, no. 2, pp. 229–234, 2003, doi: 10.1016/S0040-6090(03)01167-2.
- [14] J. Txintxurreta , E. Berasategui, and R. Ortiz, “Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters,” Coatings, vol.11, no. 92, p. 92, 2021, doi: 10.3390/coatings11010092.
- [15] C. Viespe, L. Nicolae, C. Sima, and C. Grigoriu, “ITO films deposited by advanced pulsed laser deposition,” Thin Solid Films, vol. 512, pp. 8771–8775, 2007, doi: 10.1016/j.tsf.2007.03.167.
- [16] T. Jäger, B. Bissig, M. Döbeli, A.N. Tiwari, and Y.E. Romanyuk, “Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing,” Thin Solid Films, vol. 553, p. 139360, 2014, doi: 10.1016/j.tsf.2013.12.038.
- [17] B.L. Zhu, H. Peng, Y. Tao, J. Wu, and X. W. Shi, “Highly transparent conductive F-doped SnO2 films prepared on polymer substrate by radio frequency reactive magnetron sputtering,” Thin Solid Films, vol. 756, p. 139360, 2022, doi: 10.1016/j.tsf.2022.139360.
- [18] H. Shen, H. Zhang, L. Lu, F. Jiang, and C. Yang, “Preparation and properties of AZO thin films on different substrates,” Prog. Nat. Sci.-Mater. Int., vol. 20, pp. 44–48, 2010, doi: 10.1016/S1002-0071(12)60005-7.
- [19] M. Mohamedi et al., “AZO thin films grown by confocal RF sputtering: role of deposition time on microstructural, optical, luminescence and electronic properties,” J. Mater. Sci. Mater. Electron., vol. 32, pp. 25288–25299, 2021, doi: 10.1007/s10854-021-06988-y.
- [20] C. Guillén and J. Herrero, “Polycrystalline growth and recrystallisation process in sputtering ITO thin films,” Thin Solid Films, vol. 510, pp. 260–264, 2006, doi: 10.1016/j.tsf.2005.12.273.
- [21] F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, and A.N. Tiwari, “Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature,” J. Non-Crystall. Solids., vol. 352, pp. 1466–1470, 2006, doi: 10.1016/j.jnoncrysol.2005.11.088.
- [22] R. Balasundraprabhu, E.V. Monakhov, N. Muthukumarasamy, B.G. Svensson, “Studies on Nanostructure ITO thin films on Silicon Solar Cells,” Adv. Mat. Res., vol. 678, pp. 365–368, 2013, doi: 10.4028/www.scientific.net/AMR.678.365.
- [23] M. Naftaly et al., “Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques,” Electronics. vol. 10, no. 8, p. 960, 2021, doi: 10.3390/electronics10080960.
- [24] R.N. Chauhan, C. Singh, R.S. Anand, and J. Kumar, “Effect of Sheet Resistance and Morphology of ITO Thin Films on Polymer Solar Cell Characteristics,” Int. J. Photoenergy, vol. 2012, no. 1, p. 879261, 2012, doi: 10.1155/2012/879261.
- [25] S. Sarker, H.W. Seo, Y.-K. Jin, M.A. Aziz, and D.M. Kim, ‘‘Transparent conducting oxides and their performance as substrates for counter electrodes of dye-sensitized solar cells,” Mater. Sci. Semicond. Process., vol. 93, pp. 28–35, 2019, doi: 10.1016/j.mssp.2018.12.023.
- [26] L. Shui Yang, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells,” Thin Solid Films. vol. 518, no. 21, pp. 10–13, 2010, doi: 10.1016/j.tsf.2010.03.023.
- [27] P. Lippens and U. Muehlfeld, “Indium Tin Oxide (ITO): Sputter Deposition Processes BT - Handbook of Visual Display Technology,” J. Chen, W. Cranton, and M. Fihn, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, doi: 10.1007/978-3-540-79567-4_54.
- [28] Z. Ghorannevis„ E. Akbarnejad, and M. Ghoranneviss, “Structural and morphological properties of ITO thin films grown by magnetron sputtering”. J. Theor. Appl. Phys., vol. 9, pp. 285–290, 2015, doi: 10.1007/s40094-015-0187-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d7a7579-92c8-48f6-8939-d4c06ba7262d