Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nitrocellulose (NC) is a common, commercially available, cellulosederived material and has been functionalized and widely applied in microfluidic technology, immunoassays and biochemical analyses. However, existing testing parameters always fail to completely and accurately reflect its inherent quality. In this study, we have designed and assembled a novel automatic polarizing microscope test system (PMTS) to scientifically test the nitrogen content and uniformity of nitration of NC based on the chromogenic principle of a polarization microscope. The advantages of this system are: (i) the PMTS requires less sample (only a few micrograms); (ii) the test period is shorter and the results can be obtained within 20 min; (iii) the method belongs to the nondestructive testing group, and the NC sample is not burned, dissolved, or damaged; and (iv) this method has increased accuracy, and the deviation of the nitrogen content is less than ±0.05%. The properties of various NC samples prepared by different nitricsulfuric acid systems from raw materials with diverse maturities were determined via PMTS. Five NC samples with different nitrogen contents (10.9%, 11.5%, 11.8%, 12.6% and 13.5%) were tested, and the variance of the corresponding uniformity of nitration of these samples were 3.17, 1.61, 1.15, 1.76, and 2.83. The uniformity of nitration initially decreased and then increased with increasing nitrogen content, and the best uniformity of nitration appeared at a nitrogen content of 12%. We also found that fibre maturity has a positive effect on the uniformity of nitration. This testing device and method, with its cost-effectiveness and field-portability, can significantly improve the accuracy of nitration content and uniformity, and has an important value in practical applications.
Rocznik
Tom
Strony
554--571
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, 100081 Beijing, China
autor
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, 100081 Beijing, China
autor
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, 100081 Beijing, China
autor
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, 100081 Beijing, China
autor
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, 100081 Beijing, China
autor
- Liaoning Qingyang Specialty Chemical Co., China
Bibliografia
- [1] Cai, J.; Lv, A.; Zhou, J.-P.; Zhang, L.-N. Cellulose Science and Materials. (in Chinese) Chemical Industry Press, Beijing 2015, P. 182-186; ISBN 9787122218391.
- [2] Shao, Z.-Q.; Wang, W.-J. Structure and Properties of Nitrocellulose. (in Chinese) National Defence Industry and Technology, Beijing 2011, pp. 2-11, ISBN 9787118074260.
- [3] Azancheyev, N. M.; Sergeyev, Y. N.; Sopin, V. F.; Kovalenko, V. I.; Belova, Y. M.; Marchenko, G. N. A 13C NMR Study of Cellulose Nitrates. Polymer Science U.S.S.R. 1987, 29(5): 1111-1117.
- [4] Song, Y.; Kim, S.; Heller, M. J. An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS Appl. Mater. Interfaces 2017, 9(48): 42302-42312.
- [5] Shah, K. G.; Yager, P. Wavelengths and Lifetimes of Paper Autofluorescence: a Simple Substrate Screening Process to Enhance the Sensitivity of Fluorescencebased Assays in Paper. Anal. Chem. 2017, 89(22): 12023-12029.
- [6] Gao, X.; Xu, L. P.; Xue, Z.; Feng, L.; Peng, J.; Wen, Y.; Wang, S.; Zhang, X. Dualscaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation. Adv. Mater. 2014, 26(11): 1771-5.
- [7] Li, Y.; Yang, H.; Hong, Y.; Yang, Y.; Cheng, Y.; Chen, H. Electrospun Nanofiberbased Nanoboron/Nitrocellulose Composite and Their Reactive Properties. J. Therm. Anal. Calorim. 2017, 130(2): 1063-1068.
- [8] Su, X.; Chen, Z.; Zhang, Y. Preparation and Characterization of Waterborne Cellulose Emulsion Based on Nitrocellulose Modified with Acrylic Copolymer. Chemical Papers 2017, 71(11): 2145-2152.
- [9] Weng, X.; Neethirajan, S. Aptamer-based Fluorometric Determination of Norovirus Using a Paper-based Microfluidic Device. Microchimica Acta 2017, 184(11): 4545-4552.
- [10] Hwang, H.; Shin, J.-H.; Lee, K. Y.; Choi, W. Facile One-pot Transformation Using Structure-guided Combustion Waves of Micro-nanostructured β-Bi2O3 to α-Bi2O3 @ C and Analysis of Electrochemical Capacitance. Appl. Surf. Sci. 2018, 428: 422-431.
- [11] Jakhar, S.; Pundir, C. S. Preparation, Characterization and Application of Urease Nanoparticles for Construction of an Improved Potentiometric Urea Biosensor. Biosens. Bioelectron. 2018, 100: 242-250.
- [12] Kong, M.; Shin, J. H.; Heu, S.; Park, J. K.; Ryu, S. Lateral Flow Assay-based Bacterial Detection Using Engineered Cell Wall Binding Domains of a Phage Endolysin. Biosens. Bioelectron. 2017, 96: 173-177.
- [13] Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an Automated Wax-printed Paper-based Lateral Flow Device for Alpha-fetoprotein Enzyme-linked Immunosorbent Assay. Biosens. Bioelectron 2017, 102: 27-32.
- [14] Vrublevskaya, V. V.; Afanasyev, V. N.; Grinevich, A. A.; Skarga, Y. Y.; Gladyshev, P. P.; Ibragimova, S. A.; Krylsky, D. V.; Dezhurov, S. V.; Morenkov, O. S. A Sensitive and Specific Lateral Flow Assay for Rapid Detection of Antibodies Against Glycoprotein B of Aujeszky’s Disease Virus. J. Virol. Methods 2017, 249: 175-180.
- [15] Guerieri, P. M.; Jacob, R. J.; DeLisio, J. B.; Rehwoldt, M. C.; Zachariah, M. R. Stabilized Microparticle Aggregates of Oxygen-containing Nanoparticles in Kerosene for Enhanced Droplet Combustion. Combust. Flame 2018, 187: 77-86.
- [16] Wu, C.-Y; Li, B.-G. Determination of Nitrogen Distribution in Nitrocellulose by Micro Dumamy Nitrogen Method. (in Chinese) Chinese Journal of Explosives and Propellants 1985, 5: 1-10.
- [17] Kuracina, R.; Szabová, Z.; Pastier, M.; Mencik, M. Determination of the Rate of Ignition of Nitrocellulose by Resistance Wire for the Igniter of KV 150 M2. Cent. Eur. J. Energ. Mater. 2017, 14(2): 461-468.
- [18] Berthumeyrie, S.; Collin, S.; Bussiere, P. O.; Therias, S. Photooxidation of Cellulose Nitrate: New Insights into Degradation Mechanisms. J. Hazard. Mater. 2014, 272: 137-47.
- [19] Zhang, Y.-H.; Shao, Z.-Q.; Wang, W.-J.; Wang, F.-J.; Lü, S.-Y. Effect of Nitrification System and Refined Cotton Drying Process on the Nitrogen Distribution Uniformity of Nitrocellulose. (in Chinese) Chinese Journal of Explosives and Propellants 2013, 36 (1): 68-72.
- [20] Alvarez, A.; Yanez, J.; Contreras, D.; Saavedra, R.; Saez, P.; Amarasiriwardena, D. Propellant’s Differentiation Using FTIR-photoacoustic Detection for Forensic Studies of Improvised Explosive Devices. Forensic Sci. Int. 2017, 280, 169-175.
- [21] He, Y.; He, Y.; Liu, J.; Li, P.; Chen, M.; Wei, R.; Wang, J. Experimental Study on the Thermal Decomposition and Combustion Characteristics of Nitrocellulose with Different Alcohol Humectants. J. Hazard. Mater. 2017, 340: 202-212.
- [22] Kuo, D. T. F.; Simini, M.; Allen, H. E. Leaching of Propellant Compounds from Munition Residues May Be Controlled by Sorption to Nitrocellulose. Sci. Total Environ. 2017, 599-600: 2135-2141.
- [23] Wu, Y.; Yi, Z.; Luo, Y.; Ge, Z.; Du, F.; Chen, S.; Sun, J. Fabrication and Properties of Glycidyl Azide Polymer-modified Nitrocellulose Spherical Powders. J. Therm. Anal. Calorim. 2017, 129 (3): 1555-1562.
- [24] Santos, G. P. D.; Corrêa, C. C.; Kubota, L. T. A Simple, Sensitive and Reduced Cost Paper-based Device with Low Quantity of Chemicals for the Early Diagnosis of Plasmodium Falciparum Malaria Using an Enzyme-based Colorimetric Assay. Sensors Actuators B: Chem. 2018, 255: 2113-2120.
- [25] Tian, Y.; Guo, K.; Bian, X.; Wang, T.; Chen, S.; Sun, J. Durable and Roomtemperature Curable Superhydrophobic Composite Coating on Nitrocellulose Lacquer. Surf. Coat. Technol. 2017, 328: 444-450.
- [26] Jesus, J. R.; Santos, H. M.; Lopez-Fernandez, H.; Lodeiro, C.; Arruda, M. A. Z.; Capelo, J. L. Ultrasonic-based Membrane Aided Sample Preparation of Uurine Proteomes. Talanta 2018, 178: 864-869.
- [27] Short, R. D. Surface and Bulk Nitration of Cellulose. Sheffield University: UK, 1989.
- [28] Ye, D.; Farriol, X. Improving Accessibility and Reactivity of Celluloses of Annual Plants for the Synthesis of Methylcellulose. Cellulose 2005, 12(5): 507-515.
- [29] Abd-Elghany, M.; Klapötke, T. M.; Elbeih, A. Investigation of 2,2,2-Trinitroethylnitrocarbamate as a High Energy Dense Oxidizer and Its Mixture with Nitrocellulose (Thermal Behavior and Decomposition Kinetics). J. Anal. Appl. Pyrolysis 2017, 128: 397-404.
- [30] Munro, H. S.; Short, R. D. A Study of the Low Temperature Nitration of Cellulose in Mixed Acids. J. Appl. Polym. Sci. 1990, 39(3): 539-551.
- [31] Li, B.-G.; Wu, C.-Y..; Wang, J.-X. Study on Homogeneity of Nitrocellulose Esterification. (in Chinese) Acta Armamentarii 1984, 2: 20-32.
- [32] Wang, J.-X.; Li, B.-G. The Determination of Nitrogen Content and Nitrogen Distribution of NC. Acta Armamentarii 1984, 4: 23-30.
- [33] Zhang, Y.-H.; Wang, F.-J.; Wang, W.-J.; Shao, Z.-Q.; Li, J.; Gao, K.-Z. Effect of Nitration System and Temperature on Nitration Uniformity of Nitrocellulose Fibers. (in Chinese) Acta Armamentarii 2014, 35(11): 1751-1755.
- [34] Li, L.; Yu, M.; Jia, C.; Liu, J.; Lv, Y.; Liu, Y.; Zhou, Y.; Liu, C.; Shao, Z. Cellulosic Biomass-Reinforced Polyvinylidene Fluoride Separators with Enhanced Dielectric Properties and Thermal Tolerance. ACS Appl. Mater. Interfaces 2017, 9(24): 20885-20894.
- [35] Wang, W.-J.; Feng, L.; Shao, Z.-Q.; Li, Y.-H.; Wang, F.-J. Effect of Swelling Pretreatment to Cotton Linter on Nitrogen Content and Its Distribution Uniformity of Nitrocellulose. (in Chinese) Transactions of Beijing Institute of Technology 2011, 31(12): 1474-1478.
- [36] Gismatulina, Y. A.; Budaeva, V. V.; Sakovich, G. V. Nitric Acid Preparation of Cellulose from Miscanthus as a Nitrocellulose Precursor. Russ. Chem. Bull. 2015, 64(12): 2949-2953.
- [37] Zugenmaier, P. Conformation and Packing of Various Crystalline Cellulose Fibers. Prog Polym. Sci. 2001, 26(9): 1341-1417.
- [38] Gismatulina, Y. A.; Budaeva, V. V.; Sakovich, G. V. Nitrocellulose Synthesis from Miscanthus Cellulose. Propellants Explos. Pyrotech. 2018, 43, 96.
- [39] Szala, M.; Hara, M.; Szymańczyk, L.; Surma, Z. Preliminary Study of New Propellants Containing Guanidinium or Triaminoguanidinium Azotetrazolate. Propellants Explos. Pyrotech. 2017, 42(11): 1278-1282.
- [40] Saunders, C. W.; Taylor, L. T. Solution Infrared and Nuclear Magnetic Resonance Studies of Cellulose Nitrates. Appl. Spectrosc. 1991, 45(4): 604-610.
- [41] Munro, H. S. 13C N.M.R. Study of Cellulose Nitrates. University of Durham: UK 1989.
- [42] Clark, D. T.; Stephenson, P. J. A 13C NMR and X-ray Study of the Relationship between the Distribution of Nitrate Ester Groups and Interchain d(110) Spacings in a Series of Cellulose Nitrates. Polymer 1982, 23(9): 1295-1299.
- [43] Clark, D. T.; Stephenson, P. J.; Heatley, F. Partial Degrees of Substitution in Cellulose Nitrates Determined by Means of 13C Magnetic Resonance Studies. Polymer 1981, 22(8): 1112-1117.
- [44] Bostan, R.; Varvara, S.; Găină, L.; Petrisor, T.; Mureşan, L. M. Protective Effect of Inhibitor-containing Nitrocellulose Lacquer on Artificially Patinated Bronze. Prog. Org. Coat. 2017, 111: 416-427.
- [45] Kamide, K.; Okada, T.; Terakawa, T.; Kaneko, K. Characterization of Cellulose Nitrate by Thin-Layer Chromatography. Polym. J. 1978, 10: 547.
- [46] Miles, F. D. Cellulose Nitrate: the Physical Chemistry of Nitrocellulose, Its Formation and Use. Oliver and Boyd, 1955.
- [47] Miles, F. D.; Craik, J. The Constitution of Nitrated Cellulose. Nature 1929, 123(3090): 82.
- [48] Miles, F. D.; Craik, J. The Structure of Nitrated Cellulose. II. J. Phys. Chem. 1929, 34(11): 2607-2620.
- [49] Miles, F. D.; Milbourn, M. The Structure of Nitrated Cellulose. I. J. Phys. Chem. 1929, 34(11), 2598-2606.
- [50] Clark, D. T.; Stephenson, P. J. An ESCA Study of the Surface Chemistry of Cellulose Nitrates and Double Based Propellants, with Particular Reference to Their Degradation in Ultra-violet Light. Polym. Degrad. Stab. 1982, 4(3): 185-193.
- [51] Lewis, T. J. The Birefringence of Nitrocellulose Fibers and Pastes. J. Appl. Polym. Sci. 1979, 23(9): 2661-2671.
- [52] Kohlbeck, J. A.; Bolleter, W. T. Polarization Colors of Nitrocellulose. J. Appl. Polym. Sci. 1976, 20(1), 153-156.
- [53] Kohlbeck, J. A. Polarized Light Studies of Nitrocellulose. Microscope 1979, 27(2): 67-73.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d79cbe8-93f7-4406-9d23-57e24c837382