PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selection of level and type of decomposition in predicting suspended sediment load using wavelet neural network

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advancements in artificial intelligence play a significant role in solving the problems of researchers and engineers to develop prediction models with higher accuracy over the analytical and numerical models. The wavelet ensemble artificial intelligence model has a widespread application in forecasting hydrological datasets. The signal decomposition type, level and the mother wavelet affect the model performance in wavelet-based approaches. The present analysis focuses on studying the significance of the level and type of decomposition in wavelet transform for pre-processing the input variables to predict the target variable. In this work, to forecast seasonal suspended sediment load of the Kallada River basin in Kerala, two types of decomposition with decomposition levels ranging from 2 to 7 were adopted using seasonal flow data (wet and dry seasons). To rank the WANN models, compromise programming was adopted using the results based on statistical performance indicators and compared with the performance of the conventional FFNN model. From the accuracy assessment and ranking, type-2 with 5th level decomposition can capture the actual periodicity of the signal and predict the suspended sediment load with higher accuracy. It also shows the capability to predict the extreme events of time series.
Czasopismo
Rocznik
Strony
847--857
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Department of Civil Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
  • Department of Civil Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
  • Department of Civil Engineering, National Institute of Technology Patna, Patna, Bihar, India
Bibliografia
  • 1. Azadi S, Nozari H, Goodarzi E (2020) Predicting sediment load using stochastic model and rating curves in a hydrological station. J Hydrol Eng 25(8):05020017. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001967
  • 2. Banadkooki FB, Ehteram M, Ahmed AN et al (2020) Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm. Environ Sci Pollut Res 27(30):38094–38116. https://doi.org/10.1007/s11356-020-09876-w
  • 3. Central Water Commission (2020) Compendium on sedimentation of reservoirs in India
  • 4. Galy A, France Lanord C (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology 29(1):23–26. https://doi.org/10.1130/0091-7613(2001)029%3c0023:HERITH%3e2.0.CO;2
  • 5. Ghasempour R, Roushangar K, Sihag P (2021) Suspended sediment load prediction in consecutive stations of river based on ensemble pre-post-processing kernel. Water Supply 21(7):3370–3386. https://doi.org/10.2166/ws.2021.094
  • 6. Ghorbani MA, Khatibi R, Singh VP et al (2020) Continuous monitoring of suspended sediment concentrations using image analytics and deriving inherent correlations by machine learning. Sci Rep 10:8589. https://doi.org/10.1038/s41598-020-64707-9
  • 7. GSI (2005) Geology and mineral resources of the states of India part IX—Kerala. Miscellaneous Publication 211(30):2–5
  • 8. Gupta D, Hazarika BB, Berlin M, Sharma UM, Mishra K (2021) Artificial intelligence for suspended sediment load prediction: a review. Environ Earth Sci 80:346. https://doi.org/10.1007/s12665-021-09625-3
  • 9. Hazarika BB, Gupta D, Berlin M (2020a) Modeling suspended sediment load in a river using extreme learning machine and twin support vector regression with wavelet conjunction. Environ Earth Sci 79:234. https://doi.org/10.1007/s12665-020-08949-w
  • 10. Hazarika BB, Gupta D, Berlin M (2020b) A comparative analysis of artificial neural network and support vector regression for river suspended sediment load prediction. In: Luhach AK et al (eds) First international conference on sustainable technologies for computational intelligence, advances in intelligent systems and computing, p 1045. https://doi.org/10.1007/978-981-15-0029-9_27
  • 11. Hazarika BB, Gupta D, Berlin M (2021) A coiflet LDMR and coiflet OB-ELM for river suspended sediment load prediction. Int J Environ Sci Technol 18:2675–2692. https://doi.org/10.1007/s13762-020-02967-8
  • 12. Khan MA, Stamm J, Haider S (2021) Assessment of soft computing techniques for the prediction of suspended sediment loads in rivers. Appl Sci 11(18):8290. https://doi.org/10.3390/app11188290
  • 13. Nourani V, Komasi M, Mano A (2009) A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour Manage 23(14):2877–2894. https://doi.org/10.1007/s11269-009-9414-5
  • 14. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial intelligence models in hydrology. J Hydrol 514:358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057
  • 15. Nourani V, Khanghah TR, Baghanam AH (2015) Application of entropy concept for input selection of wavelet-ANN based rainfall-runoff modeling. J Environ Inf 26(1):52–70. https://doi.org/10.3808/jei.201500309
  • 16. Rajaee T, Nourani V, Zounemat Kermani M, Kisi O (2011) River suspended sediment load prediction: application of ANN and wavelet conjunction model. J Hydrol Eng 16(8):613–627. https://doi.org/10.1061/(asce)he.1943-5584.0000347
  • 17. Reddy BSN, Pramada SK, Roshni T (2021) Monthly surface runoff prediction using artificial intelligence: a study from a tropical climate river basin. J Earth Syst Sci 130(35):1–15. https://doi.org/10.1007/s12040-020-01508-8
  • 18. Reddy BSN, Shahanas PV, Pramada SK (2022) Suitability of different precipitation data sources for hydrological analysis: a study from Western Ghats, India. Environ Monit Assess. https://doi.org/10.1007/s10661-021-09745-0
  • 19. Roshni T, Jha MK, Deo RC, Vandana K (2019) Development and evaluation of hybrid artificial neural network architectures for modeling spatio-temporal groundwater fluctuations in a complex aquifer system. Water Resour Manage 33:2381–2397. https://doi.org/10.1007/s11269-019-02253-4
  • 20. Roshni T, Jha MK, Drisya J (2020) Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Comput Appl 32(16):12737–12754. https://doi.org/10.1007/s00521-020-04722-z
  • 21. Sahoo A, Barik A, Samantaray S, Ghose DK (2021) Prediction of sedimentation in a watershed using RNN and SVM. In: Satapathy SC, Vikrant Bhateja M, Murty R, Nhu NG, Kotti J (eds) Communication software and networks. Lecture notes in networks and systems. Springer, Singapore, pp 701–708. https://doi.org/10.1007/978-981-15-5397-4_71
  • 22. Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resour Manage 26(11):3345–3365. https://doi.org/10.1007/s11269-012-0075-4
  • 23. Santos CAG, Silva GBL (2014) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59(2):312–324
  • 24. Seo Y, Kim S, Kisi O, Singh VP (2014) Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J Hydrol 520:224–243
  • 25. Sharghi E, Nourani V, Gokcekus H (2019) Conjunction of a newly proposed emotional ANN (EANN) and wavelet transform for suspended sediment load modeling. Water Supply 19(6):1726–1734. https://doi.org/10.2166/ws.2019.044
  • 26. Simons DB, Sentürk F (1977) Sediment transport technology, Water resources 700 publications, p 572
  • 27. Sireesha C, Roshni T, Jha MK (2020) Insight into the precipitation behavior of gridded precipitation data in the Sina basin. Environ Monit Assess 192:729
  • 28. Sithara S, Pramada SK, Thampi SG (2020) Sea level prediction using climatic variables: a comparative study of SVM and hybrid wavelet SVM approaches. Acta Geophys 68:1779–1790
  • 29. Tarar ZR, Ahmad SR, Ahmad I, Majid Z (2018) Detection of sediment trends using wavelet transforms in the Upper Indus River. Water 10:918. https://doi.org/10.3390/w10070918
  • 30. Turowski JM, Rickenmann D, Dadson SJ (2010) The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology 57:1126–1146. https://doi.org/10.1111/j.1365-3091.2009.01140.x
  • 31. Yang M, Sang YF, Liu C, Wang Z (2016) Discussion on the choice of decomposition level for wavelet based hydrological time series modeling. Water 8(5):1–11. https://doi.org/10.3390/w8050197
  • 32. Zeleny M (2011) Multiple criteria decision making (MCDM): from paradigm lost to paradigm regained? †. J Multi-Cretria Decis Anal 89:77–89. https://doi.org/10.1002/mcda
  • 33. Zounemat-Kermani M, Seo Y, Kim S et al (2019) Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida. Appl Sci 9(12):2534. https://doi.org/10.3390/app9122534
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d791c05-2662-4742-9365-8d9c2c10c0ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.