Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Machine tools are the main driver of economic, environmental and social sustainability in industrial production. The ongoing shift from mass production to highly individualized, small batch manufacturing requires machine tools to be more flexible to changing needs while maintaining at least the same level of productivity. However, flexibility and productivity are at odds with the necessity for resource and energy efficiency. At the same time, more sophisticated workpiece specifications are pushing the boundaries regarding precision and dynamics of machine tools. In such a high-performance context, machine safety plays a major role and is becoming increasingly challenging due to higher kinetic energies of moving components. This paper examines recent advances in machine tool precision, sustainability, and safety. Six comprehensive case studies are provided to illustrate how these improvements contribute to an increased productivity. Hardware and software solutions for pose-controlled robotic manufacturing and thermoelectrically tempered high-performance spindles will be presented. Modular machine tool frames based on building blocks and an adaptive cooling system with thermoelectric generators for linear direct drives demonstrate their major impact on resource and energy efficiency. Machine safety is addressed through an analysis of potential hazards as well as improved protective measures. Model-based predictions precisely identify critical process parameters that lead to unbalance-induced failure of slim tool extensions, while on the protection side, new statistical models are applied to assess the protective performance of safeguards much more accurately. The cutting-edge technologies for machine tools presented in this paper will help manufacturers to cope with current and future challenges in industrial production.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--25
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
- Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
- Institute for Production Systems and Design Technology IPK, Fraunhofer, Germany
Bibliografia
- [1] https://www.statista.com/chart/28744/world-population-growth-timeline-and-forecast/ (Access: 21/03/2023).
- [2] https://www.statista.com/topics/9350/urbanization/#topicOverview (Access: 21/03/2023).
- [3] https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/(Access:21/03/2023).
- [4] https://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/ (Access: 21/03/2023).
- [5] JEDRZEJEWSKI J., KWASNY W., 2011, Study on Reducing Energy Consumption in Manufacturing Systems, Journal of Machine Engineering 11/3, 7–20.
- [6] MAYR J., JEDRZEJEWSKI J., UHLMANN E., ALKAN DONMEZ M., KNAPP W., HÄRTIG F., WENDT K., MORIWAKI T., SHORE P., SCHMITT R., BRECHER C., WÜRZ T., WEGENER K., 2012, Thermal Issues in Machine Tools, CIRP Annals 61/2, 771–791.
- [7] UHLMANN E., MULLANY B., BIERMANN D., RAJURKAR K.P., HAUSOTTE T., BRINKSMEIER E., 2016, Process Chains for High-Precision Components with Micro-Scale Features, CIRP Annals – Manufacturing Technology 65, 549–572.
- [8] BRECHER C., WECK M., 2021, Machine Tools Production Systems 2: Design, Calculation and Metrological Assessment, Springer-Verlag GmbH, Berlin.
- [9] UHLMANN E., HEITMÜLLER F., MATHEI M., REINKOBER S., 2013, Applicability of Industrial Robots for Machining and Repair Processes, Procedia CIRP 11, 234–238.
- [10] https://unfccc.int/sites/default/files/english_paris_agreement.pdf (Access: 21/03/2023).
- [11] FENG C., HUANG S., 2020, The Analysis of Key Technologies for Sustainable Machine Tools Design. Applied Sciences 10, 731.
- [12] UHLMANN E., LANG K.-D., PRASOL L., THOM S., PEUKERT B., BENECKE S., WAGNER E., SAMMLER F., RICHARZ S., NISSEN N.F., 2017, Sustainable Solutions for Machine Tools, Sustainable Manufac., 2, 47–69.
- [13] SHABI L., WEBER J., WEBER J., 2017, Analysis of the Energy Consumption of Fluidic Systems in Machine Tools, Procedia CIRP 63, 573–579.
- [14] https://sdgs.un.org/goals (Access: 21/03/2023).
- [15] DENKENA B., BERGMANN B., KLEMME H., 2020, Cooling of Motor Spindles–a Review, The International Journal of Advanced Manufacturing Technology, 110, 3273–3294.
- [16] JONATH L., LUDERICH J., BREZINA J., GONZALEZ DEGETAU A.M., KARAOGLU S., 2023, Improving the Thermal Behavior of High-Speed Spindles Through the Use of an Active Controlled Heat Pipe System, 3rd International Conference on Thermal Issues in Machine Tools.
- [17] UHLMANN E., POLTE J., SALEIN S., IDEN N., TEMME P., HARTUNG D., PERSCHEWSKI S., 2020, Development of a Thermoelectrically Tempered Motorised Spindle, wt Werkstattstechnik online 110/5, 299–305.
- [18] LAI C.Y., VILLACIS CHAVEZ D.E., DING S., 2008, Transformable Parallel-Serial Manipulator for Robotic Machining, The International Journal of Advanced Manufacturing Technology 97/5–8, 2987–2996.
- [19] FRAUNHOFER SOCIETY, 2022, Flexmatik 4.1, URL: https://www.flexmatik.de/ (Access: 09/01/2023).
- [20] KLIMCHIK A., PASHKEVICH A., 2018, Robotic Manipulators with Double Encoders: Accuracy Improvement Based on Advanced Stiffness Modeling and Intelligent Control, IFAC PapersOnLine, 51/11, 740–745.
- [21] XIAOYING S., XIAOJUN Z., PENGYUAN W., CHEN H., 2018, A Review of Robot Control with Visual Servoing, Proceedings of IEEE 8th Annual Conference on Cyber Technology in Automation, Control and Intelligent Systems, 116–121.
- [22] GIERLAK P., 2021, Force Control in Robotics: A Review of Applications, Journal of Robotics and Mechanical Engineering 1/1.
- [23] KAMALI K., BONEV I.A., 2019, Optimal Experimental Design for Elasto-Geometrical Calibration of Industrial Robots, IEEE/ASME Transactions on Mechatronics, 24/6, 2733–2744.
- [24] JIANG Z., HUANG M., 2021, Stable Calibrations of Six-DOF Serial Robots by Using Identification Models with Equalized Singular Values, Robotica, 39/12, 1–22.
- [25] UHLMANN E., POLTE M., BLUMBERG J., ZHOULONG L., KRAFT A., 2021, Hyperparameter Optimization of Artificial Neural Networks to Improve the Positional Accuracy of Industrial Robots, Journal of Machine Engineering, 21/2, 47–59.
- [26] BLUMBERG J., ZHOULONG L., BESONG L.I., POLTE M., BUHL J., UHLMANN E., BAMBACH M., 2021, Deformation Error Compensation of Industrial Robots in Single Point Incremental Forming by Means of Data-Driven Stiffness Model, Proceedings of the 26th International Conference on Automation and Computing, 1–6.
- [27] CUI Z., GAO L., 2010, Studies on Hole-Flanging Process Using Multistage Incremental Forming, Journal of Manufacturing Science and Technology, 2/2, 124–128.
- [28] BESONG L.I., BUHL J., ÜNSAL M., BAMBACH M., POLTE M., BLUMBERG, J., UHLMANN E., 2020, Development of Tool Paths for Multi-Axis Single Stage Incremental Hole-Flanging, Procedia Manufacturing 47, 1392–1398.
- [29] CHEN X., WEN T., QIN J., HU J., ZHANG M., ZHANG Z., 2020, Deformation Feature of Sheet Metals During Inclined Hole Flanging by Two Point Incremental Forming, International Journal of Precision Engineering and Manufacturing 21, 169–176.
- [30] KOREN Y., 1999, Reconfigurable Manufacturing Systems, CIRP Annals-Manufacturing Technology, 48/2, 527–540.
- [31] MORI M., FUJISHIMA M., 2009, Reconfigurable Machine Tools for a Flexible Manufacturing System, Changeable and Reconfigurable Manufacturing Systems, Springer, 101–109.
- [32] BRANKAMP K., HERRMANN J., 1969, Baukastensystematik – Grundlagen und Anwendung in Technik und Organisation, Ind.-Anz., 91, 693–697.
- [33] ITO Y., 2008, Modular Design for Machine Tools, McGraw Hill Professional.
- [34] WULFSBERG J.P., VERL A., WURST K.H., GRIMSKE S., BATHKE C., HEINZE T., 2013, Modularity in Small Machine Tools, Production Engineering, 7/5, 483–490.
- [35] ABELE E., WÖRN A., 2009, Reconfigurable Machine Tools and Equipment, Changeable manufacturing systems, Springer, 111–125.
- [36] PEUKERT B., SAOJI M., UHLMANN E., 2015, An Evaluation of Building Sets Designed for Modular Machine Tool Structures to Support Sustainable Manufacturing, Procedia CIRP, 26, 612–617.
- [37] UHLMANN E., SAOJI M., PEUKERT B., 2016, Principles for Interconnection of Modular Machine Tool Frames, Procedia CIRP, 40, 413–418.
- [38] UHLMANN E., SALEIN S., 2016, Concepts of Self-Sufficient Cooling Systems for Linear Direct Drives, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111/7–8, 411–415.
- [39] UHLMANN E., SALEIN S., 2017, Experimental Investigation of Self-Sufficient Cooling Systems for linear Direct Drives of Machine Tools, wt Werkstattstechnik online, 107/5, 359–365.
- [40] UHLMANN E., PRASOL L., THOM S., SALEIN S., WIESE R., 2018, Development of a Dynamic Model for Simulation of A Thermoelectric Self-Cooling System for Linear Direct Drives In Machine Tools, Proceedings of 1th Conference on Thermal Issues in Machine Tools, Wissenschaftliche Scripten, Dresden, 75–91.
- [41] UHLMANN E., POLTE M., SALEIN S., TRIEBEL F., IDEN N., 2019, Adaptive Cooling System with Thermoelectric Generators, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 114/11, 757–762.
- [42] UHLMANN E., SALEIN S., POLTE M., TRIEBEL F., 2020, Modelling of a Thermoelectric Self-Cooling System Based on Thermal Resistance Networks for Linear Direct Drives In Machine Tools, Journal of Machine Engineering 20/1, 43–57.
- [43] UHLMANN E., SALEIN S., 2022, Performance Analysis of an Adaptive Cooling System with Primary and Secondary Heat Paths for Linear Direct Drives in Machine Tools, CIRP Journal of Manufacturing Science and Technology, 39, 91–103.
- [44] SCHNEIDER M., MICHELBERGER M., 2017, Schlanke Spannlösungen Erleichtern die Zugänglichkeit, VDI-Z Special Werkzeuge + Fertigungstechnik 1, Springer-VDI, Düsseldorf.
- [45] HENNING F., MOELLER E., 2011, Handbuch Leichtbau, Carl Hanser, München.
- [46] DIN 69882-8, 2005, Werkzeughalter mit kegel-hohlschaft, Beuth, Berlin.
- [47] THOM S., UHLMANN E., 2019, Safety of Slim Tool Extensions for Milling Operations at the Limit, Wissenschaftliche Gesellschaft für Produktionstechnik, 9/2, 347–356.
- [48] DIN EN ISO 14120, 2015, Safety of Machinery - Guards - General Requirements for Design and Construction of Fixed and Movable Guards, ISO copyright office, Vernier.
- [49] UHLMANN E., POLTE M., BERGSTRÖM N., MÖDDEN H., 2022, Analysis of the Effect of Cutting Fluids on the Impact Resistance of Polycarbonate Sheets by Means of a Hypothesis Test, Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2358–2365.
- [50] ISO 23125, 2015, Machine Tools – Safety – Turning Machines, ISO Copyright Office, Vernier.
- [51] MÖDDEN H., BERGSTRÖM N., 2022, Design of Impact Tests for Polycarbonate Sheets and Their Deterioration by Cooling Lubricants – Part 1: Models and Limitations of Measurement, Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2350–2357.
- [1] https://www.statista.com/chart/28744/world-population-growth-timeline-and-forecast/ (Access: 21/03/2023).
- [2] https://www.statista.com/topics/9350/urbanization/#topicOverview (Access: 21/03/2023).
- [3] https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/(Access:21/03/2023).
- [4] https://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/ (Access: 21/03/2023).
- [5] JEDRZEJEWSKI J., KWASNY W., 2011, Study on Reducing Energy Consumption in Manufacturing Systems, Journal of Machine Engineering 11/3, 7–20.
- [6] MAYR J., JEDRZEJEWSKI J., UHLMANN E., ALKAN DONMEZ M., KNAPP W., HÄRTIG F., WENDT K., MORIWAKI T., SHORE P., SCHMITT R., BRECHER C., WÜRZ T., WEGENER K., 2012, Thermal Issues in Machine Tools, CIRP Annals 61/2, 771–791.
- [7] UHLMANN E., MULLANY B., BIERMANN D., RAJURKAR K.P., HAUSOTTE T., BRINKSMEIER E., 2016, Process Chains for High-Precision Components with Micro-Scale Features, CIRP Annals – Manufacturing Technology 65, 549–572.
- [8] BRECHER C., WECK M., 2021, Machine Tools Production Systems 2: Design, Calculation and Metrological Assessment, Springer-Verlag GmbH, Berlin.
- [9] UHLMANN E., HEITMÜLLER F., MATHEI M., REINKOBER S., 2013, Applicability of Industrial Robots for Machining and Repair Processes, Procedia CIRP 11, 234–238.
- [10] https://unfccc.int/sites/default/files/english_paris_agreement.pdf (Access: 21/03/2023).
- [11] FENG C., HUANG S., 2020, The Analysis of Key Technologies for Sustainable Machine Tools Design. Applied Sciences 10, 731.
- [12] UHLMANN E., LANG K.-D., PRASOL L., THOM S., PEUKERT B., BENECKE S., WAGNER E., SAMMLER F., RICHARZ S., NISSEN N.F., 2017, Sustainable Solutions for Machine Tools, Sustainable Manufac., 2, 47–69.
- [13] SHABI L., WEBER J., WEBER J., 2017, Analysis of the Energy Consumption of Fluidic Systems in Machine Tools, Procedia CIRP 63, 573–579.
- [14] https://sdgs.un.org/goals (Access: 21/03/2023).
- [15] DENKENA B., BERGMANN B., KLEMME H., 2020, Cooling of Motor Spindles–a Review, The International Journal of Advanced Manufacturing Technology, 110, 3273–3294.
- [16] JONATH L., LUDERICH J., BREZINA J., GONZALEZ DEGETAU A.M., KARAOGLU S., 2023, Improving the Thermal Behavior of High-Speed Spindles Through the Use of an Active Controlled Heat Pipe System, 3rd International Conference on Thermal Issues in Machine Tools.
- [17] UHLMANN E., POLTE J., SALEIN S., IDEN N., TEMME P., HARTUNG D., PERSCHEWSKI S., 2020, Development of a Thermoelectrically Tempered Motorised Spindle, wt Werkstattstechnik online 110/5, 299–305.
- [18] LAI C.Y., VILLACIS CHAVEZ D.E., DING S., 2008, Transformable Parallel-Serial Manipulator for Robotic Machining, The International Journal of Advanced Manufacturing Technology 97/5–8, 2987–2996.
- [19] FRAUNHOFER SOCIETY, 2022, Flexmatik 4.1, URL: https://www.flexmatik.de/ (Access: 09/01/2023).
- [20] KLIMCHIK A., PASHKEVICH A., 2018, Robotic Manipulators with Double Encoders: Accuracy Improvement Based on Advanced Stiffness Modeling and Intelligent Control, IFAC PapersOnLine, 51/11, 740–745.
- [21] XIAOYING S., XIAOJUN Z., PENGYUAN W., CHEN H., 2018, A Review of Robot Control with Visual Servoing, Proceedings of IEEE 8th Annual Conference on Cyber Technology in Automation, Control and Intelligent Systems, 116–121.
- [22] GIERLAK P., 2021, Force Control in Robotics: A Review of Applications, Journal of Robotics and Mechanical Engineering 1/1.
- [23] KAMALI K., BONEV I.A., 2019, Optimal Experimental Design for Elasto-Geometrical Calibration of Industrial Robots, IEEE/ASME Transactions on Mechatronics, 24/6, 2733–2744.
- [24] JIANG Z., HUANG M., 2021, Stable Calibrations of Six-DOF Serial Robots by Using Identification Models with Equalized Singular Values, Robotica, 39/12, 1–22.
- [25] UHLMANN E., POLTE M., BLUMBERG J., ZHOULONG L., KRAFT A., 2021, Hyperparameter Optimization of Artificial Neural Networks to Improve the Positional Accuracy of Industrial Robots, Journal of Machine Engineering, 21/2, 47–59.
- [26] BLUMBERG J., ZHOULONG L., BESONG L.I., POLTE M., BUHL J., UHLMANN E., BAMBACH M., 2021, Deformation Error Compensation of Industrial Robots in Single Point Incremental Forming by Means of Data-Driven Stiffness Model, Proceedings of the 26th International Conference on Automation and Computing, 1–6.
- [27] CUI Z., GAO L., 2010, Studies on Hole-Flanging Process Using Multistage Incremental Forming, Journal of Manufacturing Science and Technology, 2/2, 124–128.
- [28] BESONG L.I., BUHL J., ÜNSAL M., BAMBACH M., POLTE M., BLUMBERG, J., UHLMANN E., 2020, Development of Tool Paths for Multi-Axis Single Stage Incremental Hole-Flanging, Procedia Manufacturing 47, 1392–1398.
- [29] CHEN X., WEN T., QIN J., HU J., ZHANG M., ZHANG Z., 2020, Deformation Feature of Sheet Metals During Inclined Hole Flanging by Two Point Incremental Forming, International Journal of Precision Engineering and Manufacturing 21, 169–176.
- [30] KOREN Y., 1999, Reconfigurable Manufacturing Systems, CIRP Annals-Manufacturing Technology, 48/2, 527–540.
- [31] MORI M., FUJISHIMA M., 2009, Reconfigurable Machine Tools for a Flexible Manufacturing System, Changeable and Reconfigurable Manufacturing Systems, Springer, 101–109.
- [32] BRANKAMP K., HERRMANN J., 1969, Baukastensystematik – Grundlagen und Anwendung in Technik und Organisation, Ind.-Anz., 91, 693–697.
- [33] ITO Y., 2008, Modular Design for Machine Tools, McGraw Hill Professional.
- [34] WULFSBERG J.P., VERL A., WURST K.H., GRIMSKE S., BATHKE C., HEINZE T., 2013, Modularity in Small Machine Tools, Production Engineering, 7/5, 483–490.
- [35] ABELE E., WÖRN A., 2009, Reconfigurable Machine Tools and Equipment, Changeable manufacturing systems, Springer, 111–125.
- [36] PEUKERT B., SAOJI M., UHLMANN E., 2015, An Evaluation of Building Sets Designed for Modular Machine Tool Structures to Support Sustainable Manufacturing, Procedia CIRP, 26, 612–617.
- [37] UHLMANN E., SAOJI M., PEUKERT B., 2016, Principles for Interconnection of Modular Machine Tool Frames, Procedia CIRP, 40, 413–418.
- [38] UHLMANN E., SALEIN S., 2016, Concepts of Self-Sufficient Cooling Systems for Linear Direct Drives, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111/7–8, 411–415.
- [39] UHLMANN E., SALEIN S., 2017, Experimental Investigation of Self-Sufficient Cooling Systems for linear Direct Drives of Machine Tools, wt Werkstattstechnik online, 107/5, 359–365.
- [40] UHLMANN E., PRASOL L., THOM S., SALEIN S., WIESE R., 2018, Development of a Dynamic Model for Simulation of A Thermoelectric Self-Cooling System for Linear Direct Drives In Machine Tools, Proceedings of 1th Conference on Thermal Issues in Machine Tools, Wissenschaftliche Scripten, Dresden, 75–91.
- [41] UHLMANN E., POLTE M., SALEIN S., TRIEBEL F., IDEN N., 2019, Adaptive Cooling System with Thermoelectric Generators, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 114/11, 757–762.
- [42] UHLMANN E., SALEIN S., POLTE M., TRIEBEL F., 2020, Modelling of a Thermoelectric Self-Cooling System Based on Thermal Resistance Networks for Linear Direct Drives In Machine Tools, Journal of Machine Engineering 20/1, 43–57.
- [43] UHLMANN E., SALEIN S., 2022, Performance Analysis of an Adaptive Cooling System with Primary and Secondary Heat Paths for Linear Direct Drives in Machine Tools, CIRP Journal of Manufacturing Science and Technology, 39, 91–103.
- [44] SCHNEIDER M., MICHELBERGER M., 2017, Schlanke Spannlösungen Erleichtern die Zugänglichkeit, VDI-Z Special Werkzeuge + Fertigungstechnik 1, Springer-VDI, Düsseldorf.
- [45] HENNING F., MOELLER E., 2011, Handbuch Leichtbau, Carl Hanser, München.
- [46] DIN 69882-8, 2005, Werkzeughalter mit kegel-hohlschaft, Beuth, Berlin.
- [47] THOM S., UHLMANN E., 2019, Safety of Slim Tool Extensions for Milling Operations at the Limit, Wissenschaftliche Gesellschaft für Produktionstechnik, 9/2, 347–356.
- [48] DIN EN ISO 14120, 2015, Safety of Machinery - Guards - General Requirements for Design and Construction of Fixed and Movable Guards, ISO copyright office, Vernier.
- [49] UHLMANN E., POLTE M., BERGSTRÖM N., MÖDDEN H., 2022, Analysis of the Effect of Cutting Fluids on the Impact Resistance of Polycarbonate Sheets by Means of a Hypothesis Test, Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2358–2365.
- [50] ISO 23125, 2015, Machine Tools – Safety – Turning Machines, ISO Copyright Office, Vernier.
- [51] MÖDDEN H., BERGSTRÖM N., 2022, Design of Impact Tests for Polycarbonate Sheets and Their Deterioration by Cooling Lubricants – Part 1: Models and Limitations of Measurement, Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2350–2357.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d775a36-34d6-452d-accb-3a09c0ed7d24