PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scalar linear impulsive Riemann-Liouville fractional differential equations with constant delay-explicit solutions and finite time stability

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Riemann-Liouville fractional differential equations with a constant delay and impulses are studied in this article. The following two cases are considered: the case when the lower limit of the fractional derivative is fixed on the whole interval of consideration and the case when the lower limit of the fractional derivative is changed at any point of impulse. The initial conditions as well as impulsive conditions are defined in an appropriate way for both cases. The explicit solutions are obtained and applied to the study of finite time stability.
Wydawca
Rocznik
Strony
121--130
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Applied Mathematics and Modeling, University of Plovdiv “Paisii Hilendarski”, Plovdiv 4000, Bulgaria
  • Department of Analysis, Geometry and Topology, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Bibliografia
  • [1] N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta 45(2006), 765-771, DOI: 10.1007/s00397-005-0043-5.
  • [2] R. K. Saxena, A. M. Mathai, and H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci. 282(2002), 281-287, DOI: 10.1023/A:1021175108964.
  • [3] M. P. Lazarevic, Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mech. Res. Commun. 33(2006), 269-279, DOI: 10.1016/j.mechrescom.2005.08.010.
  • [4] M. P. Lazarevic and A. M. Spasic, Finite-time stability analysis of fractional order time-delay system: Grownwalls approach, Math. Comput. Model 49(2009), 475-481, DOI: 10.1016/j.mcm.2008.09.011.
  • [5] V. N. Phat and N. T. Thanh, New criteria for finite-time stability of nonlinear fractional-order delay systems: a Gronwall inequality approach, Appl. Math. Lett. 83(2018), 169-175, DOI: 10.1016/j.aml.2018.03.023.
  • [6] Y. Ma, B. Wu, and Y. E. Wang, Finite-time stability and finite-time boundedness of fractional order linear systems, Neurocomputing 173(2016), 2076-2082, DOI: 10.1016/j.neucom.2015.09.080.
  • [7] R. Wu, Y. Lu, and L. Chen, Finite-time stability of fractional delayed neural networks, Neurocomputing 149(2015), 700-707, DOI: 10.1016/j.neucom.2014.07.060.
  • [8] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5(2002), no. 4, 367-387.
  • [9] R. Agarwal, S. Hristova, and D. O’Regan, Explicit solutions of initial value problems for linear scalar Riemann-Liouville fractional differential equations with a constant delay, Mathematics 8(2020), 32, DOI: 10.3390/math8010032.
  • [10] R. Agarwal, S. Hristova, and D. O’Regan, Basic concepts of Riemann-Liouville fractional differential equations with non-instantaneous impulses, Symmetry 11(2019), 614, DOI: 10.3390/sym11050614.
  • [11] R. Agarwal, S. Hristova, and D. O’Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, to appear in Rocky Mountain J. Math. https://projecteuclid.org/euclid.rmjm/1576227809.
  • [12] M. Li and J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett. 64(2017), 170-176,DOI: 10.1016/j.aml.2016.09.004.
  • [13] M. Li and J. R. Wang, Finite time stability and relative controllability of Riemann-Liouville fractional delay differential equations, Math. Meth. Appl. Sci. 42(2019), no. 18, 6607-6623, DOI: 10.1002/mma.5765.
  • [14] M. Li and J. R. Wang, Representation of solution of a Riemann-Liouville fractional differential equation with pure delay, Appl. Math. Lett. 85(2018), 118-124, DOI: 10.1016/j.aml.2018.06.003.
  • [15] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2010.
  • [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [17] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [18] R. Agarwal, S. Hristova, and D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal. 19(2016), no. 2, 290-318, DOI: 10.1515/fca-2016-0017.
  • [19] J. R. Wang, M. Feckan, and Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal. 19(2016), no. 4, 806-831, DOI: 10.1515/fca-2016-0044.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d75d0aa-c008-4aef-9c74-9683e6fa32fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.