Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Higher active power of a submerged arc furnace is commonly believed to increase its capacity in the process of ferrosilicon smelting. This is a true statement but only to a limited extent. For a given electrode diameter d, there is a certain limit value of the submerged arc furnace active power. When this value is exceeded, the furnace capacity in the process of ferrosilicon smelting does not increase but the energy loss is higher and the technical and economic indicators become worse. Maximum output regarding the reaction zone volumes is one of parameters that characterize similarities of furnaces with various geometrical parameters. It is proportional to d3 and does not depend on the furnace size. The results of statistical analysis of the ferrosilicon smelting process in the 20 MVA furnace have been presented. In addition to basic electrical parameters, such as active power and electrical load of the electrodes, factors contributing to higher resistance of the furnace bath and resulting lower reactive power Px demonstrate the most significant effect on the electrothermal process of ferrosilicon smelting. These parameters reflect metallurgical conditions of ferrosilicon smelting, such as the reducer fraction, position of the electrodes and temperature conditions of the reaction zones.
Wydawca
Czasopismo
Rocznik
Tom
Strony
633--638
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wzory
Twórcy
autor
- Silesian University of Technology. Dep. of Engineering Production, 8 Str Krasińsigo, 40-019 Katowice, Poland
autor
- Silesian University of Technology, Institute of Metals Technology, 8 Str Krasińsigo, 40-019 Katowice, Poland
autor
- Silesian University of Technology, Institute of Metals Technology, 8 Str Krasińsigo, 40-019 Katowice, Poland
Bibliografia
- [1] A. Schei, J. K. Tuset, H. Tveit, Production of High Silicon Alloys. Trondheim: Tapir (1998).
- [2] V. L. Zubov, M. I. Gasik, Electrometallurgy of Ferrosilicon. Physical Chemistry and Technology. Dnenpropetrovsk: System Technologies Publ. (2002) (rus).
- [3] B. M. Struński, Rasczety rudo-termiczeskich pieczi. Izdatielstwo Metallurgia, Moskwa (1982).
- [4] M. Gasik, [red.]: Handbook of Ferroalloys Theory and Technology. Waltham: Elsevier Ltd. (Butterworth-Heinemann), (2013).
- [5] B. Panic, Influence of the bed type on the flow resistance change during the two-phase (gas plus powder) flow through the descending packed bed. Archives of Metallurgy and Materials 59 (2), 795-800 (2014).
- [6] O. S. Klevan, Removal of C and SiC from Si and FeSi during ladle refining and solidification. PhD Thesis. Trondheim: The Norwegian University of Science and Technology, Department of Metallurgy, 1997.
- [7] T. Merder, J. Pieprzyca, M. Warzecha, P. Warzecha, Application of high flow rate gas in the process of argon blowing through steel. Archives of Metallurgy and Materials 62 (2), 905-910 (2017).
- [8] B. Machulec, S. Gil, W. Bialik, Equilibrium model of the ferrosiliucon process in the submerged arc furnace. 27th International Conference on Metallurgy and Materials, METAL 2018, Conference Proceedings, Brno, Czech Republic, 122-127 (2018).
- [9] D. Senapati, E. V. S. Uma Maheswar, C. R. Ray, Ferro silicon operation at IMFA – a critical analysis. International Ferro-Alloys Congress Infacon XI, New Delhi, India, 371-380 (2007).
- [10] M. Golewski, Programowanie w języku R. Analiza danych, obliczenia, symulacje, Warszawa: PWN, 2016.
Uwagi
EN
1. This paper was partially created with the financial support of Polish Ministry for Science and Higher Education under internal grant BK221/RM0/2018 for Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Poland.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d75514d-a4fd-435a-95b1-6af0cbc37f4c