PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the combustion processes in the gas turbine module of an fpso operating on associated gas conversion products

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider the issue of thermo-chemical heat recovery of waste heat from gas turbine engines for the steam conversion of associated gas for offshore vessels. Current trends in the development of offshore infrastructure are identified, and the composition of power plants for mobile offshore drilling units and FPSO vessels is analyzed. We present the results of a comparison of power-to-volume ratio, power-to-weight ratio and efficiency for diesel and gas turbine power modules of various capacities. Mathematical modeling methods are used to analyze the parameters of an alternative gas turbine unit based on steam conversion of the associated gas, and the estimated efficiency of the energy module is shown to be 50%. In the modeling of the burning processes, the UGT 25000 serial low emission combustor is considered, and a detailed analysis of the processes in the combustor is presented, based on the application of a 35-reaction chemical mechanism. We confirm the possibility of efficient combustion of associated gas steam conversion products with different compositions, and establish that stable operation of the gas turbine combustor is possible when using fuels with low calorific values in the range 7–8 MJ/kg. It is found that the emissions of NOx and CO during operation of a gas turbine engine on the associated gas conversion products are within acceptable limits.
Rocznik
Tom
Strony
149--156
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Heroyiv Ukraine av. 9, 54025 Mykolaiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Heroyiv Ukraine av. 9, 54025 Mykolaiv, Ukraine
autor
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Organization for Economic Co-operation and Development (2014): Offshore Vessel, Mobile Offshore Drilling Unit & Floating Production Unit Market Review. Retrieved from http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=c/wp6(2014)13/final&doclanguage=en.
  • 2. Visiongain (2012): The Mobile Offshore Drilling Units (MODU) Market 2012–2022. Retrieved from https://www.marketresearch.com/product/sample-6889468.pdf.
  • 3. Stena Drilling (2018): Stena Drill MAX. Retrieved from http://stenadrillingmediabank.s3-eu-west-1.amazonaws. com/stena/wp-content/uploads/2018/04/11110204/Stena-DrillMAX_Technical-Specification_APR2018.pdf.
  • 4. Stena Drilling (2018): Stena Don. Retrieved from https://www.stena-drilling.com/stena/wp-content/ uploads/2017/08/80845_Stena_DON_Brochure_A4_FINAL_LO.pdf.
  • 5. OCYAN (2017): FPSO Pioneiro de Libra. Retrieved from http://www.ocyansa.com/en/fleet/fpso-pioneiro-de-libra.
  • 6. Offshore Magazine (2018): OTC 2018: FPSO Market Recovery Under Way, Says EMA Report. Retrieved from https://www.offshore-mag.com/production/article/16804111/otc-2018-fpso-market-recovery-under-way-says-ema-report.
  • 7. Offshore Technology (2018): Report: 55 FPSOs to Start Operations by 2022. Retrieved from https://www.of fshore-technolog y.com/news/report-55-fpsos-start-operations-2022/.
  • 8. Offshore Magazine (2002): Leadon FPSO Delivered on Time, Complete, Within Budget. Retrieved from https://www.offshore-mag.com/production/article/16759844/leadon-fpso-delivered-on-time-complete-within-budget.
  • 9. ENI (2016): Block 15-06 East Hub Development Project. Retrieved from https://www.eni.com/docs/en_IT/enicom/publications-archive/publications/brochuresbooklets/countries/brochure_eni_angola_ese_web.pdf.
  • 10. Aker Floating Production (2009): FPSO Dhirubhai-1. Retrieved from http://www.akerfloatingproduction.com/s.cfm/3-12/FPSO-Dhirubhai-1-Operation.
  • 11. OCYAN (2017): FPSO Pioneiro de Libra. Retrieved from http://www.ocyansa.com/en/fleet/fpso-pioneiro-de-libra.
  • 12. OCYAN (2017): FPSO Cidade de Itajai. Retrieved from https://api.ocyan-sa.com/sites/default/files/2018-09/cidade_do_itajai_0.pdf.
  • 13. Offshore Technology (2018): Triton Oil Field, North Sea Central. Retrieved from https://www.offshore-technology.com/projects/triton/.
  • 14. MAN Diesel & Turbo (2013): Offshore Power Module. Retrieved from https://marine.man-es.com/docs/defaultsource/shopwaredocumentsarchive/offshore-powermodule.pdf?sfvrsn=c2dd9a8_4.
  • 15. Caterpillar Global Petroleum (2013): Offshore Power Generation Module. Retrieved from https://s7d2.scene7.com/is/content/Caterpillar/C10340375.
  • 16. Siemens (2019): We Power the World with Innovative Gas Turbines: Siemens Gas Turbine Portfolio. Retrieved from https://new.siemens.com/global/en/products/energy/power-generation/gas-turbines.html.
  • 17. Olszewski W., Dzida M. (2018): Selected Combined Power Systems Consisted of Self-Ignition Engine and Steam Turbine. Polish Maritime Research, No.1, Vol. 25, 198–203.
  • 18. Domachowski Z., Dzida M. (2019): Applicability of Inlet Air Fogging to Marine Gas Turbine. Polish Maritime Research, Vol. 26, No.1, 15-19.
  • 19. Mazzetti M.J., Neksa P., Walnum H.T., Hemmingsen A.K. (2014): Energy-Efficient Technologies for Reduction of Offshore CO2 Emissions. Oil and Gas Facilities, Vol. 3, No. 1, 8996.
  • 20. Tarelko W. (2018): Application of Redundancy in Ship Power Plants of Offshore Vessels. New Trends in Production Engineering, Vol. 1, No. 1, 443-452.
  • 21. Tarelko W. (2018): Redundancy as a Way Increasing Reliability of Ship Power Plants. New Trends in Production Engineering. Vol. 1, No. 1, 515-522.
  • 22. The UK Oil and Gas Industry Association Ltd. (2015): Offshore Gas Turbines and Dry Low NOx Burners. An Analysis of the Performance Improvement. Retrieved from https://oilandgasuk.co.uk/wp-content/uploads/2015/05/producys-cayrgory.pdf.
  • 23. Cherednichenko O., Serbin S. (2018): Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat. Journal of Marine Science and Application, Vol. 17, No.1, 122-130.
  • 24. Cherednichenko O. (2015): Analysis of Efficiency of Diesel- Gas Turbine Power Plant with Thermo-Chemical Heat Recovery. MOTROL: Commission of Motorization and Energetics in Agriculture. Vol.17, No. 2, 25-28.
  • 25. Cherednichenko O. (2019): Efficiency Analysis of Methanol Usage for Marine Turbine Power Plant Operation Based on Waste Heat Chemical Regeneration. Problemele Energeticii Regionale, No.1, 102-111.
  • 26. Cherednichenko O., Serbin S., Dzida M. (2019): Application Thermo-Chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units. Polish Maritime Research, 3(103), Vol. 26, 181187.
  • 27. Dzida M., Girtler J. (2016). Operation Evaluation Method for Marine Turbine Combustion Engines in Terms of Energetics. Polish Maritime Research, 4(92), Vol. 23, 6772.
  • 28. Farry M. (1998): Ethane from Associated Gas Still the Most Economical. Retrieved from https://www.ogj.com/articles/print/volume-96/issue-23/in-this-issue/gas-processing/ethane-from-associated-gas-still-the-most-economical.html.
  • 29. Budanova N.А., Vantsovskiy V.G., Кorotich E.V. (2004): Development of the Low-Emission Combustion Chambers for the Gas Turbine Engines DN70, DN80, DB90. Marine and Energetic Gas Turbine Building, Vol. 1, GTR&PC “Zorya- Mashproekt”, Nikolaev, 31-35.
  • 30. Serbin S. I., Matveev I. B., Mostipanenko G. B. (2011): Investigations of the Working Process in a “Lean-Burn” Gas Turbine Combustor With Plasma Assistance. IEEE Transactions on Plasma Science, Vol. 39, No. 12, 3331-3335.
  • 31. Launder B.E., Spalding D.B. (1972): Lectures in Mathematical Models of Turbulence. Academic Press, London.
  • 32. Choudhury D. (1993): Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107, 1993.
  • 33. Serbin S.I. (1998): Modeling and Experimental Study of Operation Process in a Gas Turbine Combustor with a Plasma-Chemical Element. Combustion Science and Technology, Vol. 139, 137-158.
  • 34. Serbin S.I. (2006): Features of Liquid-Fuel Plasma-Chemical Gasification for Diesel Engines. IEEE Transactions on Plasma Science, Vol. 34, No. 6, 2488-2496.
  • 35. Matveev I., Serbin S., Mostipanenko A. (2007): Numerical Optimization of the „Tornado” Combustor Aerodynamic Parameters. Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA 2007-391, Vol. 7, 4744-4755.
  • 36. Serbin S., Goncharova N. (2017): Investigations of a Gas Turbine Low-Emission Combustor Operating on the Synthesis Gas. International Journal of Chemical Engineering, Vol. 4, 1-14.
  • 37. Serbin S.I., Matveev I.B., Goncharova N.A. (2014): Plasma Assisted Reforming of Natural Gas for GTL. Part I. IEEE Transactions on Plasma Science, Vol. 42, No. 12, 3896-3900.
  • 38. Matveev I.B., Serbin S.I., Vilkul V.V., Goncharova N.A. (2015): Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Transactions on Plasma Science, Vol. 43, No. 12, 3974-3978.
  • 39. Gatsenko N.A., Serbin S.I. (1995): Arc Plasmatrons for Burning Fuel in Industrial Installations. Glass and Ceramics, Vol. 51(11-12), 383-386
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d745460-7a7b-4ab4-a663-8f62323d4c6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.