PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of cutting parameters and machining environments on the chips characteristics and surface quality of commercial high-conductive materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper is on the physical and mechanical characterization of machined chips of commercially available highly conductive materials, namely aluminium and copper under different machining environments. More specifically, geometry and hardness of chips as well as the chips removal effect on the machined surfaces are investigated in a quantitative fashion as a function of machining fluid and cutting parameter. The machining is carried out using a horizontal shaper machine with a V-shaped HSS tool under three different machining fluids, where the feed rate is kept constant, while the cutting speed and depth of cut are varied. Results show that chips attain the lower hardness in dry machining conditions than those of under kerosene and soluble oil as a phenomenon alike to hot rolling. Discontinuous chips are formed at low depth of cut for Al and higher depth of cut for Cu in dry condition. Cutting fluid offer improved surface quality through less friction and built up edge formation. Cu generates more heat than Al since copper is harder than aluminum and cutting speed is more effective than depth of cut.
Rocznik
Strony
325--334
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Directorate of Advisory, Extension and Research Services, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
Bibliografia
  • 1. Khamisa SS., Lajisb MA., Albertc RAO. (2015). A Sustainable Direct Recycling of Aluminum Chip (AA6061) in Hot Press Forging Employing Response Surface Methodology. Procedia CIRP, Vol. 26, pp. 477-481.
  • 2. Sharmila R., Kaiser MS., Ahmed SR. (2020) On the Electrical Conduction Characteristics of Commercially Available Good Conductors Subjected to Saline-Water Corrosion. International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, India.
  • 3. Gao GF., Zhao B., Jiao F., Liu CS. (2002). Research on the influence of cutting condition on the surface micro structure of ultrathin wall parts in ultrasonic vibration cutting. Journal of Materials Processing Technology, Vol. 129, pp. 66-70.
  • 4. Korkut I., Kasap M., Ciftci I.,Seker U. (2004). Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Materials and Design, Vol. 25, pp. 303-305.
  • 5. Mustafa A. (2019). Effect of cutting parameters on surface roughness, tool temperature and vibration in turning of AISI 316 Ti stainless steel. Materials Testing, Vol. 61, No. 1, pp. 71-79.
  • 6. Kaiser MS., Fazlullah F., Ahmed SR. (2020). A comparative study of characterization of machined surfaces of some commercial polymeric materials under varying machining parameters. Journal of Mechanical Engineering, Automation and Control Systems, Vol. 1, No. 2, pp. 75-88.
  • 7. Pi Y., Yin X., Deng W., Xia W. (2019). Study on Surface Hardness and Microstructure of Pure Copper Chip Strips Prepared by LSEM, Advances in Materials Science and Engineering, Vol. 2019, pp. 1-9.
  • 8. Monograph DKI. (2010). Recommended machining parameters for copper and copper alloys. German Copper Institute, Germany.
  • 9. Sales, WF., Diniz, AE., Machado, AR. (2001). Application of cutting fluids in machining processes. Journal of the Brazilian Society of Mechanical Sciences, Vol. 23, No. 2, pp. 227-240.
  • 10. Radhika N., Subramanian R., Sajith A. (2014). Analysis of chip formation in machining aluminium hybrid composites. Journal of Scientific Research, Vol. 2, No. 1, pp. 9-15.
  • 11. Avila RF., Abrao AM. (2001). The effect of cutting fluids on the machining of hardened AISI 4340 steel. Journal of Materials Processing Technology, Vol. 119, pp. 21-26.
  • 12. Reddy MR., Murthy VSR, Kumar PR., Rao GKM. (2012). Comparative Study of Theoretical and Practical Surface Roughness Profiles Produced In Turning. International Journal of Advanced Engineering Technology, Vol. 3, No. 1, pp. 89-99.
  • 13. Kwon KB, Cho DW, Lee SJ (1999). A fluid dynamic analysis model of the ultra-precision cutting mechanism. CIRP Annals Manufacturing Technology, Vol. 48, pp. 43-46.
  • 14. Kaiser MS., Ahmed SR. (2019). Investigation of chip formation characteristics during surface finishing of HDPE samples. International Journal of Materials and Metallurgical Engineering, Vol. 13, No. 9, pp. 462-466.
  • 15. Grzesik W. (2017). Advanced Machining Processes of Metallic Materials. Elsevier publications, Vol. 2, No. 7, pp. 113-117.
  • 16. Shaw MC. (2005). Metal Cutting Principles, 2nd Edition, Oxford University Press, New York.
  • 17. Rahman KT., Uddin MN., Kaiser MS., Ahmed SR. (2019). Characterization of machined surfaces and chips formation in milling operation of commercial high-conducting materials. 4th International Conference on Mechanical, Industrial and Materials Engineering, Rajshahi, Bangladesh.
  • 18. Kaiser MS., Datta S., Bandyopadhyay PP., Guha A., Roychowdhury A., Banerjee MK. (2013). Effect of grain refinement through minor additions of scandium and zirconium on the machinability of Al-Mg Alloys. Journal of the Institution of Engineers, India, Series D, Vol. 94, No. 1, pp. 17-24.
  • 19. Sadegh, AM., Worek, WM. (2018). Marks' Standard Handbook for Mechanical Engineers, 12th Edition, McGraw-Hill Education, New York, USA.
  • 20. Holmes PM. (1971). Factors affecting the selection of cutting fluids. Industrial Lubrication and Tribology, Vol. 23 No. 2, pp. 47-55.
  • 21. Sulaiman S., Roshan A., Borazjani S. (2014). Effect of cutting parameters on tool-chip interface temperature in an orthogonal turning process. Advanced Materials Research, Vol. 903, pp.21-26
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d712a40-7a7b-44dd-8aa3-7e4b3aa148bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.