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41, Rue de la Liberté, Cité Bouchoucha 2000, Le Bardo, Tunis, Tunisia

Abstract

Decision Support Systems are powerful tools to help support making decisions. How-
ever, they are known to be customized for a specific purpose and can rarely be reused.
Moreover, they do not support complex situations sufficiently. Our work addresses this
challenge and consists in building a DSS that aims to help emergency managers to manage
cases of crisis. The DSS is designed to be flexible and adaptive, so that it may be applied
on different subjects of studies and whose behaviour may change with the change of its
environment. We endowed it therefore with a multiagent layered core whose role is to
represent dynamically and in real time the current situation, to characterize it and to com-
pare it with past known scenarios. The final result of the DSS will help decision-makers
to analyze the current crisis and its possible evolution. The RoboCupRescue simulation
system is chosen as a test bed to illustrate and to test this approach.

1 Introduction

Risk and crisis management are one of the most
complex problems raised by the scientific commu-
nity currently. The efforts devoted to this research
area consists of changing the classical disaster man-
agement methods by using new means. This is al-
ready realized and accepted as a high priority task
by many organizations, governments and compa-
nies in Europe and all over the world [1].

We are interested in our works in the risk de-
tection and management in emergency situations.
Decision Support Systems (DSSs) are an appropri-
ate solution for this kind of problem, since they
are able to complete the knowledge of the decision
makers and to support them to deal with particu-
lar problems. However, DSSs are well known to
be customized for a specific purpose and can rarely
be reused. Moreover, they only support circum-
stances which lie in the known and knowable spaces
and do not support complex situations sufficiently
[4]. Thereby, our main goal is to develop a system
that must be sufficiently independent of the treated

problem in order to be adjusted easily to different
cases of studies. Moreover, we propose an origi-
nal approach based on a mechanism of perception,
representation, characterization and assessment that
enables the system to operate autonomously and
to adapt its behaviour according to the change of
its environment. We use the multiagent systems
(MAS) technology to achieve this objective. In fact,
intelligent agents [16] are able to self-perform ac-
tions and to interact with other agents and their en-
vironment in order to carry out some objectives and
to react to changes they perceive by adapting their
behaviours.

The proposed system is made up of several
agent organizations whose core is operating on
three levels. A first level, in which a factual agent
organization has as role to represent dynamically
and in real time the evolution of the current situa-
tion. This step is fundamental in the final assess-
ment of the situation. Indeed, the system creates
its own representation of the environment state in
order to extract the significant facts that may reveal
the existence of risks. It compares therefore the cur-
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rent situation with previous known ones stored as
scenarios. That way, the system may have a generic
and adaptive mechanism and may learn during its
functioning.

In our approach, it is necessary to test the MAS
on several case studies to illustrate it and to vali-
date it. The work presented here is addressed to
the RoboCupRescue Simulation System (RCRSS)
[8][10]. We provide here a brief description of this
application and we present and discuss the related
experimentations.

2 DSS Role and Design

2.1 DSS Definition and Role

DSSs are interactive, computer-based systems
that aid users in judgment and choice activities.
They provide data storage and retrieval but en-
hance the traditional information access and re-
trieval functions with support for model building
and model-based reasoning. They support fram-
ing, modelling, and problem solving [2]. More pre-
cisely, the purposes of a DSS are the following [6]:

– Supplementing the decision maker.

– Allowing better intelligence, design, or choice.

– Facilitating problem solving.

– Providing aid for non structured decisions.

– Managing knowledge.

In our context, the DSS could be used either to
prevent a crisis or to deal with it. In both cases, the
main internal aim of the system is to detect a cru-
cial event. From the system point of view, detect-
ing a crisis implies representing it, characterizing
it and comparing it with other crises, permanently
stored in scenarios. The result of this comparison
is provided to the user as the answer of the global
system. The system chooses to highlight parts of
scenarios similar to the current situation. The in-
formation thus obtained will help decision-makers
to analyze the current crisis and its possible evolu-
tions.

The DSS has to evaluate a dynamic situation.
Monitoring the situation generates dynamic param-
eters which vary all the time. The system must be

dynamic in order to be able to take into account
the changes in the description of the evolving situa-
tion. This requires a system able to be reconfigured
when necessary, thus benefiting from a sufficiently
flexible and adaptive architecture. Complexity and
dynamics of the situation to be treated, lead us to
choose MAS paradigm for its modelling.

The observed situation generally contains a
great number of dynamic parameters, that is to say
parameters whose value change over time. Systems
allowing the management of such situations must
be dynamic in order to be able to handle these evo-
lutions. As a consequence, to design these systems,
a flexible and adaptive architecture is needed. Such
a system must not only represent the observed sit-
uation, but must also make it possible to evaluate
it. Evaluating the situation can be performed by an-
ticipating its possible consequences. This can be
carried out using previous situations whose conse-
quences are used relying on the following hypothe-
sis: if situation A looks like situation B, the conse-
quences of situation A ought to be similar to those
of situation B. This mechanism is similar to a Case-
Based Reasoning (CBR) [9] which is a methodol-
ogy based on the re-using of past experiments for
solving new problems.

2.2 Role of the DSS in Crisis Management

A crisis may be defined as a major unplanned
occurrence [7] with a potential negative outcome
[12]. We are interested, in our research, in natural
and technological crisis. Crisis management (also
known as emergency management or emergency re-
sponse) is a dynamic process that begins well before
the occur of the critical event and continues over its
conclusion. The process involves a proactive, re-
sponsive and reflective component. Each stage of
a crisis poses challenges for managers and decision
makers and requires a different approach depend-
ing on the phase in question. This process is com-
plex and exceeds widely the human abilities. Thus,
DSSs may help to manage this process. Indeed,
the DSS we present here must insure the following
functionalities:
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– Evaluation of the current situation: the system
must detect/recognize an abnormal event.

– Evaluation/Prediction of the consequences: the
system must assess the event by identifying the
possible consequences.

– Planning interventions: the system must help
the emergency responders in planning their in-
terventions thanks to an actions plan (or proce-
dures) that must be the most appropriate to the
situation.

2.3 DSS Architecture and Design

Fig. 1 shows the global architecture of this DSS.
The user interfaces allow the dialogue between all
users authorized to access the DSS and its core.
This interface also displays the final results pro-
vided by the core. The latter also needs to access
outside distributed information systems (DIS). The
specific information on the domain stores persistent
data such as the ontology and scenarios. Proximity
measure is also an aspect of this specific informa-
tion.

dss.jpg

Figure 1. Whole DSS architecture

2.4 Dss Application: RoboCupRescue
Case Study

We chose the RCRSS in order to apply the pro-
posed approach. The RCRSS is an agent-based sim-
ulator which intends to reenact the rescue mission

problem in real world. It reproduces an earthquake
scenario which includes various kinds of incidents
as the traffic after earthquake, buried civilians, road
blockage, fire accidents, etc. A set of heteroge-
neous agents (RCR agents) coexist in the disaster
space: rescue agents that are fire brigades, ambu-
lance teams and police forces, and civilian agents.
A model of the RCR disaster space and the proper-
ties of its components, and the RCR agents are de-
tailed in [11]. We use this model in order to extract
knowledge and to formalize information.

As in real case, RCR agents play the actors role
here, they send their perceived information to the
DSS in order to get a sequence of actions to per-
form. The DSS builds, based on these information,
an overall knowledge which allows the evaluation
of the whole situation. We defined two kinds of fac-
tual agents for this case study:

– Factual agents describing phenomena (fires, in-
juries, building collapses,...).

– Factual agents describing the states and the
events related to the RCR agents. More pre-
cisely, these agents manage the evolution of the
states and the actions of the RCR agents.

We focus, in this paper, on the fires incidents and
their related facts. The work concerns therefore
the perception and the representation of both the
fires propagation and the behaviours of the fire
brigades. Hence, we present here the implemen-
tation of the fire factual agents and the fire brigade
factual agents.

3 Perception and Representation
MAS

3.1 Factual Semantic Features

The system receives and analyses permanently
elementary information coming from the environ-
ment. These information are presented in the shape
of a Factual Semantic Feature (FSF). The noun
given to this message content provides an explica-
tion to our approach: we stress observed and punc-
tual elements that are the facts. A fact is a knowl-
edge or information based on real occurrences; it
may be an event, an action, a phenomenon, etc.
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Each FSF describes a fact and consequently a
state change of an observed object issued from the
environment. This may be modelled as a state-
transition diagram. A transition represents an in-
stantaneous transit from a state to another. It
is triggered by an event (message), followed by
the performance of one or several actions in the
new state. The observation of this change is sent
to the system in the shape of an FSF. An FSF
has a generic structure which is composed of <
key,(quali f ier,value)+ >. The key is a unique
identifier related to the observed object to which are
associated some characteristics described by quali-
fiers and their related values. We associated also
time and spatial values to an FSF to describe the
temporal and the spatial aspects of the observation.
An example of an FSF is the following: <fire�1,
intensity, strong, localisation, building�12, time,
10:00pm>. This fact describes a strong fire, located
in building�12 and which is observed at 10:00pm.

Dedicated to the observed environment, the on-
tology serves as a mean for establishing a concep-
tually concise basis for communicating knowledge.
The vector of this communication is the FSF, with
the taxonomy structuring and defining the meaning
of the observed facts. The measure functions use
the ontology to compare FSFs. This comparison is
coupled with temporal and spatial data carried by
the FSF to obtain a normalised proximity measure
in [-1, 1]. A value of -1 means a complete opposi-
tion between the two compared FSFs. A value of
0 means neutral or not comparable. A value of 1
means identity between the two FSFs and any other
value in this interval means a semantic connexion
in the range from opposite to identical.

3.2 Factual Agents

The system is permanently fed by information
describing the state of the environment. These in-
formation is handled thereafter by agents. The sys-
tem needs knowledge about the environment such
as the ontologies of the domain and proximity mea-
sures. The representation layer is made of fac-
tual agents whose main aim is to represent the cur-
rent situation dynamically. A Factual Agent (FA)
is a reactive and a proactive agent according to
Wooldridge in [15]. Each FA reflects a partial part
of the observed situation. Fig. 2 shows the internal
structure of an FA. Each agent has:

– An FSF that represents its knowledge.

– An Augmented Transition Newtork (ATN) of
four states that describe its behaviour. ATN tran-
sitions carries conditions and actions, and are
specific to the FA type.

– Specific indicators that reflect its dynamics.

– An Acquaintances Network (AN).

fa.jpg

Figure 2. Internal structure of a factual agent

When a given FSF reaches the system, either an
FA–whose FSF has the same key–exists and this FA
will replace its internal FSF with the new one, or a
new FA is created. Thus, at any time, the whole
population of FAs with their embedded FSFs re-
flects the current view of the situation.

FAs represent the dynamic evolution of the sit-
uation thanks to their internal indicators. These in-
dicators must reflect as much as possible the reality,
their definition depend therefore on the treated ap-
plication. We defined two indicators for the RCR
case study:

– Action Indicator (AI): represents the potential
and the efficiency to solve problems for FAs re-
lated to RCR agents, and the damage and the
hazard degree for FAs related to phenomena.

– Plausibility Indicator (PI): means the ability to
discover new problems in the disaster space for
factual agents related to RCR agents, and the
solving probability and the worsening impedi-
ment for FAs related to phenomena. For phe-
nomena factual agents, PI means the solving
probability and the worsening impediment of a
phenomenon.
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The acquaintances network of every FA is generic
and dynamically constructed. It contains all the
other FAs which are semantically connected (prox-
imity not equal to 0). The FA of a given acquain-
tances network is close when its proximity is posi-
tive and is opposite when its proximity is negative.
The evolution of the FA is managed by strengthen-
ing and weakening mechanisms. Internal indicators
reflect this evolution.

3.3 Application on a Fire Scenario

We discuss here two different fire scenarios in
order to illustrate the functioning and the adapting
of the representation MAS. In the first one, we have
inactivated the police forces who has as goal to clear
the blocked roads. This made therefore more diffi-
cult the moving of the fire brigades to achieve the
fires. In the second scenario, we let police forces do
their work, thus the roads are less blocked and the
accessibility to the fires is much easier.

In Fig. 3, the green chart illustrates the activi-
ties number of the representation MAS during the
whole scenario. The activities include the state
changes, the indicator values variations and the
messages sent by the FAs. The red area represents
the fire spreading, expressed by the number of the
perceived fires over time. In this scenario the fire
brigades could not reach the fires, they still moving
to reach the fires without success. This is expressed
by several oscillations of the FAs activities.

fire-scenario.jpg

Figure 3. Fire spreading and FA activities without
police forces aid

Fig. 4 shows the FA activities and the fire
spreading in the second scenario. We note here a
smaller area of fires compared to the previous sce-
nario. Moreover, we have less oscillations and a
higher number of the FA activities. This reflects the
system stability on the one hand and the efficiency
of the fire brigades on the other hand. Indeed, the
system reacts in a moderate way at the beginning
of the scenario, in which the fires are isolated. By
dint of receiving more and more information, de-
scribing the fires propagation and the mobilization
of the fire brigades, the factual agents react by in-
tensifying their activities. The values and the oscil-
lations of the activities number depend strongly on
the behaviours of the fire brigade agents. Indeed,
the activities number grows when the fire brigades
are fighting fires. Inversely, it drops when the fire
brigades are potentially far from fires or are search-
ing new ones. This explains the perfect synchro-
nization between the activities evolution and the fire
spreading. To summarize, we can say that there is
an activities peak when there is a high level of risk
and emergency, due to the rapid spreading of fires
and the struggle of the fire brigades that try to re-
store the situation.

fire-scenario-pf.jpg

Figure 4. Fire spreading and FA activities with
police forces aid

At the end of the scenario. the system knows an
evident bending result of the fires extinction. The
factual agents become less meaningful since there
are not important facts related to fires that come
stimulating them. However, the system still in a
warning state in order to alert every notable change
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in the environment. We may notice this at the 63rd
second of the simulation, when a fire reappears sud-
denly. The system reacts immediately to this fact
and resumes its activities, then it becomes again sta-
ble after the fire were put out.

4 Characterization and Interpreta-
tion MAS

We used FAs in the representation situation
level to reflect the dynamic change of the situation
and to let emerge, from this view, agent subsets.
The analysis of these subsets is based on geomet-
ric criteria, insuring thus the independence of the
treatment from the subject of study. Each FA ex-
poses behavioural activities that are characterized
thanks to its internal indicators. The latter form a
behavioural vector that draws, by its variations, the
dynamics of the agent during its live. This gives a
meaning to the state of the agent inside its organi-
zation and consequently to the prominence of the
semantic character that it carries.

4.1 Clustering Algorithms for the Charac-
terization of the Situation

The goal of our approach is to characterize the
factual agents organization by forming dynamically
agents clusters and comparing them with stored sce-
narios. The clustering algorithms are an appropri-
ate approach to this objective, since they are able to
create objects groups in an unsupervised way. The
basic element of these algorithms is the measure of
(dis)similarity between the compared objects, that
corresponds often to a geometric distance. In our
case, the FAs evolve in an n-dimensional space, cor-
responding to the n internal indicators of the FAs.
We have therefore a two dimensional space in the
current case study. AI and PI are quantitative, hence
it is possible to establish distances between agents.
We used Cosine Similarity (CS) as (dis)similarity
measure. Indeed, this measure is the most suited to
our problem since we try to compare vectors that
express the changes activities of the FAs. The value
provided by CS is included in a range of [0, 1]. A
value of 1 means the perfect equality between the
two vectors (consequently the similarity of the re-
lated FAs), whereas 0 means their total divergence
(dissimilarity of the FAs).

CS(V1,V2) =
AI1AI2 +PI1PI2√

AI2
1 +PI2

1

√
AI2

2 +PI2
2

(1)

With V1 and V2 two vectors.

We experimented two of the most used cluster-
ing algorithms: DBScan algorithm [3] and Kmeans
algorithm [5]. However, Kmeans presents an im-
portant inconvenient, since it requires to determine
beforehand the number of the created clusters, that
we do not know in advance. We kept finally DB-
Scan for its concordance with our approach, but
also for its efficiency.

4.2 DBScan Implementation

Fig. 5 shows an example of a DBScan experi-
mentation. A number of parameters should be spec-
ified, such as the radios of the neighbourhood and
the threshold density. These parameters are deter-
mined based on pattern scenarios that we define for
each case study and on which relies the DSS sce-
narios base. The two axis of the chart represent AI
values and PI values. We have two formed clus-
ters in this example which are colored by red and
blue, and a third set of unclassified agents, called
”noise”. At this stage, these agents do not have suf-
ficiently evolved to integrate other clusters, conse-
quently they do not have significant semantic char-
acters.

dbscan.jpg

Figure 5. Display 2D of DBScan algorithm
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Clusters are dynamic and change according to
information coming from the environment. Indeed,
each entering FSF may change the form of the clus-
ters by altering the internal state of one or several
agents.

4.3 Interpretation MAS

According to the type of the treated application,
each interpretation agent is associated to one or sev-
eral scenarios stored in the SB. The aim of these
agents is to identify, among the emergent FA clus-
ters, those which are enough close to the stored sce-
narios. They have as role also to store the new sce-
narios and to deal with them. The final goal of the
interpretation agents is to compare the current situ-
ation with past situations and to generate thereafter
response elements, that help users to evaluate the
situation and to make decisions.

Scenarios are past experimented and memo-
rised situations. They are used by the system to
evaluate the treated situation and the potential risks
that may produce. We defined scenarios based-on
the characterization provided by Rolland and al. in
[11] and which includes:

– The content: a scenario represents partial knowl-
edge describing a particular situation or a partic-
ular state of the environment.

– The purpose: a scenario allows the system to
recognize a current situation, evaluate its conse-
quences and determine the appropriate decisions
to deal with.

– The form: scenarios are stored in a scenarios (or
cases) base in the form of cases which are made
of couples of problem, solution.

– The life-cycle: scenarios are managed by a set of
interpretation agents. Their mechanism is simi-
lar to a CBR.

Each scenario, stored in the base, represents a prob-
lem resolution episode. The problem contains the
description of the scenario. It is a memorized im-
age of an agent cluster that has been experimented.
It is constituted by a set of elements describing the
characteristics of the FAs at a given moment of their
evolution. This elements are the FSFs and the indi-
cators values of their associated FAs. The solution
is composed of two parts:

– the first part covers the possible evolution of the
situation. It may describe therefore a risk ap-
pearing or evolution,

– the second part provides the target objective
which consists in managing the described risk. It
is often formulated by a combination of actions
and the persons who perform these actions, and
used means (for example: extinguishing a build-
ing, rescuing a person, pushing a button,...).

agent-scenario.jpg

Figure 6. Scenario structure

5 Decision MAS

The decision MAS is composed of decision
agents. The role of these agents is to automate the
decision transmission process between the system
and its environment, which must be appropriate to
the treated application. Decision agents get the re-
sponses sent by the interpretation agents and adapt
them to produce final decisions and send them fi-
nally to the users. In the case of the RoboCupRes-
cue, each agent manages a type of a problem. We
have four agents:

– an agent dealing with decisions related to the fire
incidents,

– an agent dealing with decisions related the res-
cue problem of the injured civilians,
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– an agent dealing with decisions related to the
blocked roads problem,

– an agent dealing with default decisions. These
decisions concern default actions, for example
RCR agents may receive instructions to ride
through the city in order to search new incidents.

The decision agents access to a common knowl-
edge base in order to accomplish their tasks.
This knowledge base includes the world model of
RoboCupRescue and the current state of the disas-
ter space, which is updated continuously by all the
RCR agents. In addition, the decision agents have
an intelligent module, which allows them to make
computing operations and to combine certain ac-
tions to make them more suited to the current sit-
uation.

6 Conclusion

This paper aimed at addressing the problem of
the decision support in crisis situations. A layered
multiagent DSS has been presented here, whose
goal is to help decision-makers to evaluate and to
manage crisis situations. The core of the DSS rep-
resents dynamically and in real time the current sit-
uation using factual agents, then characterizes it and
compares it with past known scenarios to provide fi-
nally results to decision-makers.

The factual agents played a fundamental role in
all the process, since it allow the emerge of the note-
worthy occurred facts of the environment. More-
over, they insure the system adaptivity thanks to
their flexible internal structure. The DBscan algo-
rithm is used to characterise the situation and to ex-
tract FAs subsets. Indeed this method is powerful
to form dynamic clusters based-on geometric cri-
teria. This insure the independence of the system
from the treated application. The parameters are
defined based-on typical scenarios, but we contem-
plate using probabilistic methods aiming to change
these parameters during the process.

The next step in this work, is to introduce
the other types of the factual agents related to the
RoboCupRescue and to enrich consequently the
scenario base to deal with all the captured events. It
is also necessary to carry out the approach to other
applications in order to test and to validate the mul-
tiagent core.
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