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1. Introduction 
 

The principal objectives of a technical system are to 
ensure the realization of continuous operational 
processes of its components. However, a population 
of units (aircraft engine components, computer 
modules, means of transport, etc.) that randomly fail 
but are completely repairable requires an effective 
maintenance infrastructure and a logistic system, that 
will be available when required. As a result, 
reliability and effectiveness of a technical system, 
being worked in changeable environment, cannot be 
analyzed in isolation, without taking into account the 
numerous links with its logistic support system. 
According to the definition [2], [7], a logistic support 
system is the process-oriented subsystem of the 
technical system which supports its operational 
processes through the integration of all activities, 
being necessary to assure the effective and 
economical flow of needed materials and related 
information, and which supports the maintenance 
processes of this system in aspect of providing the 
necessary maintenance and support infrastructure. 
The emphasis here is on logistics as it pertains to 
systems throughout their planned life cycle. It 
provides the means to realize many supportability 
functions for a set of operational requirements within 
the intended operations and support environment. 
The most important functions, which must be 

assessed in order to fulfil the intended mission, are 
connected with [73]: 
• providing the necessary supplies and services, 

including: 
- spare parts and components of technical 

equipment providing, 
- ensuring on-time realization of repair 

processes according to the requirements and 
maintenance policy 

• sustainment of the operational objects in the 
functional up-state, what includes:  
- providing necessary equipment to assess the 

efficient functions of maintenance and 
support, 

- realization of maintenance processes of 
support equipment (see Figure 1). 

 

 
 

Figure 1. Logistic activities in an operational system 
[73]  
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Abstract 

We present an overview of some recent developments in the area of inventory planning and maintenance 
scheduling issues. The emphasis is on spare part inventory models, which authors divided into four main 
groups of models: models of optimal spare part inventory policy for system under PM, number of spare parts 
optimization models, storage reliability models, multi-echelon systems models. Later, in the paper there is 
considered the time dependent system of systems where the system total task must be executed during the 
constrained time resource. There is used the simulation approach to investigate the influence of parameters of 
the procurement process (order quantity, critical inventory level, lead-time length) on the system of systems 
behavior. 
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The interest in development and investigation of 
maintenance problems has been extensively 
discussed in the literature since the early 1960s. The 
basic review in the area of maintenance modelling is 
prepared by Pierskalla & Voelker [53], where authors 
investigated discrete time vs. continuous time 
maintenance models, later updated by Valdez-Flores 
& Feldman [67]. For other surveys see e.g. [10], [48], 
[49], [50], [52], [57], [65], [71], [73].  
However, most of the maintenance models 
investigated in the literature on reliability theory 
assume, that all the necessary logistic support 
resources, which include maintenance resources, 
support personnel, logistic information and data, 
spares and repair parts, and facilities, are 
immediately provided when it is desired. In practice, 
the repair capacity is not infinite, and logistic 
information may be unreliable. Moreover, the 
influence of a spare provisioning policy on the 
maintenance policy also cannot be ignored, since 
spares are ordered and carried in the limited quantity, 
and the procurement lead time is not negligible [73]. 
Throughout years, the importance of the logistic 
support functions, and therefore also of logistic 
support management has grown. The plethora of 
studies, which have addressed the problem of logistic 
support systems modelling, can be divided into four 
main groups being presented in Figure 2.  A 
bibliography of the work done can be found in [73]. 
 

 
 

Figure 2. Classification scheme of logistic support 
system models [73]  
 

The problem of providing an adequate and efficient 
supply of spare parts, in support of maintenance and 
repair of operational systems, has been researched for 
many decades.  
Sufficient inventory level of spare parts has to be 
maintained to keep the system in operating condition. 
When the spare elements are under stocked, it may 
lead to extended system downtime and, as a 
consequence, have a negative impact on the system 
availability level. On the other hand, maintenance of 
excessive spares can lead to large inventory holding 
costs. Moreover, the requirements for planning the 
logistics of spare elements necessary in maintenance 
actions of operational systems differ from those of 

other materials in several ways: the service 
requirements are higher, the effects of stock-outs 
may be financially remarkable, the demand for parts 
may be sporadic and difficult to forecast, and the 
prices of individual parts may be very high. 
Consequently, one of the most important decisions 
faced by maintenance managers is the determination 
of optimal stocking levels which involves finding the 
answer to the following questions, such that the total 
expected inventory costs are minimized: 
• When to (re)order? 
• How many items to (re)order? 

There is a plethora of models in the literature on 
reliability theory regarding to the spares supply 
process optimization. A significant portion of them 
base on a classic inventory theory, where the 
procurement process parameters are usually 
optimized taking into account the cost constraints 
(see e.g. [55]).  
Recently, many inventory papers which treat stock 
replenishment problems for stochastically failing 
equipment/systems are surveyed in [53] and updated 
by [10]. 
A survey of inventory system models, made in 1991 
by Cho & Parlar [10], divides the existing models 
into three topical categories: 
• irreparable-item inventory models, 
• repairable-item inventory models: single-

echelon case, 
• repairable-item inventory models: multi-echelon 

case. 
Irreparable-item inventory modelling have been 
narrowed down mostly to the cases of Markov 
processes implementation (see e.g. [63], [78]. Early 
studies in the area of repairable-item inventory 
modelling had primarily been focused on the military 
problems [15]. More recently, other applications 
have appeared. 
Recent overview of models integrating spare part 
management and repair capacity is made by Guide Jr 
& Srivastava [25], which examines the various 
models and classifies them according to their 
solution methodology, single versus multi-echelon, 
and exact versus approximate solutions. Worth 
taking a note is also a survey done by Kennedy et al. 
[36] in which literature is reviewed according to 
management issues, multi-echelon problems, 
problems involving obsolescence, or repairable spare 
parts. 
Consequently, the main problems being solved in the 
area of inventory planning and maintenance 
scheduling issues, taking into account the main 
factors influenced the optimal ordering policy 
definition (Figure 3), are: 
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• supply process parameters optimization taking 
into account the chosen maintenance policy 
constraints (see e.g. [44], 

• storage reliability (see e.g. [31], [43], 
• service level optimization in order to minimize 

the inventory costs (see e.g. [41], 
• multi-echelon problems (see e.g. [5], [13]. 

 
 

 
 

Figure 3. Main factors influenced definition of 
optimal ordering policy for a technical system [73] 
 

Following the introduction, this paper is focused on 
spare part inventories optimization problem. 
Consequently, the paper is organized as follows: in 
the Section 2 we present an overview of the most 
often applied models. We do not aim to give a list of 
all papers that have appeared. Instead, we want to 
investigate the main ways of the inventory models 
development, presented in the recent literature.  
Later, there is provided an example of time 
dependent system of systems where the system total 
task must be executed during the constrained time 
resource, and a briefly summary.  
There is used a “system of systems” conception to 
model the interactions between operational system 
and its logistic support system. According to the 
definition [14], the system of systems context arises 
when a need or a set of needs are met with a mix of 
multiple systems, each of which are capable of 
independent operation but must interact with each 
other in order toprovide a given capability. More 
information can be found in [74], [75, [76].  
 
2. Spare part inventory models 
 

The general classification scheme for spare part 
inventory models is presented in Figure 4.  
 

 
 

Figure 4. Spare part inventory models classification 
[73] 
 
2.1. Models of optimal spare part inventory 
policy for system under preventive 
maintenance 
 

First group of the models presented in the Figure 4 
regards to the works, which are aimed at spare part 
provisioning policy parameters optimization when 
maintenance policy of a technical system is known. 
The main classification scheme of the investigated 
models is presented in Figure 5. 
There are two fundamental types of maintenance – 
preventive maintenance (PM) and corrective 
maintenance (CM). For PM demand for spare parts is 
predictable. For such maintenance it may be possible 
o order parts to arrive just in time for use, and it may 
not be necessary to stockpile repair parts at all. In 
case of unplanned repair, the consequences of stock-
outs regards to system unavailability with significant 
costs that is why some kind of stock policy is 
necessary. It is natural in technical systems that only 
spare units which can be delivered by order are 
available for maintenance/replacement. In this case 
we cannot neglect a lead time for delivering the spare 
unit. 
The main inventory policy parameters optimization 
criteria include availability ratio maximization (see 
e.g. [22]), minimization of maintenance and 
inventory costs (see e.g. [64]) or minimization of 
stock-out risk function (see e.g. [26]).  
First models which investigate the possibility of 
spare part shortage due to delivery process 
performance regards to single-unit systems (see e.g. 
[64], [66]). In [64] authors consider a one-unit 
system where each failure is scrapped without repair 
and each spare is only provided after a lead time by 
an order. In the presented model the following policy 
is adopted: order for a spare is made at a pre-
specified time instant to during an operating period of 
an original unit which is called a regular order. The 
lead time entails L2 time units. After delivery, the 
original unit is replaced whether is operable or not. 
However, if the failure of the unit takes place before 
the time instant to emergency order is made at a 
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failure time instant immediately. After an emergency 
delivery, which entails L1 time units, a failed unit is 
replaced, and the process repeats itself. 
 

 
 
 

 
 

Figure 5. Models of optimal spare part inventory policy for system under PM [73] 
 

Taking into account the following assumptions: 
• infinite planning horizon, 
• negligible replacement time of operating unit, 
• system is continuously kept under constant 

observation till a pre-specified time instant to or 
till the instant of failure, whichever occurs first,  

the expected cost per unit time in the steady state is 
given by the formula: 
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where: 
cp1  – cost of spare element expedited order which 

is made at time instant t 
cp2  – costs of spare element regular order made at 

time to 
cdw   – cost of system downtime per unit time 
L1(L2) – random  lead  time  for  emergency  

(regular) order 
cm    – cost of system observation proportional to 

the expected duration of observation 
R(t)    – system reliability function 
F(t)     – cumulative distribution function of unit  
 

Presented model development can be found in [66], 
where the additional assumption is made: the 

operational unit replacement is made in one of two 
situations, whichever occurs first: when unit fails or 
when time of PM occurs at time instant tw. The 
expected cost per unit time in a steady state is given 
by: 
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where: 
ch – cost of holding a spare unit in a stock per unit of 

time 
L  – random lead time 
 

Another work, made by Dohi et al. [21], presents 
generalized order-replacement model arising in the 
spare part inventory management, which bases on the 
assumptions taken in [64] and [66]. There is 
considered a replacement problem for one-unit 
systems where each failed unit is scrapped and each 
spare is provide, after a lead time, by an order. If the 
original unit does not fail up to a pre-specified time 
instant to the regular order is made, and after a lead 
time L2 the spare unit is delivered. The delivered 
spare element is put into inventory till the moment of 
original unit failure or till the moment of PM, 
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whichever occurs first. On the other hand, if the 
original unit fails before the time instant to, the 
expedited order is made immediately at the failure 
time, and the spare takes over its operation just after 
it is delivered after a lead time L1. In this situation, 
the regular order is not made. The function of the 
expected total cost per time unit is given by: 
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(3) 

 
where: 
csp    – shortage cost per unit of time 
Ei(t) – cumulative distribution function of Li (i = 1, 2) 
 

The problem of optimal spare ordering policies for 
two-unit cold standby redundant system with two 
dissimilar units is considered in [22]. The 
replacement problem is defined as follows: unit 1 
begins working and unit 2 is in standby at time 0, and 
the planning horizon is infinitive. If unit 1 does not 
fail up to a pre-specified time to, the regular order for 
spares of both units 1 and 2 is made at time to. After 
a lead time L2 the spares are delivered, and at the 
time to+L2 all original units are replaced 
correctively/preventively by spares, irrespective of 
the states of original ones. Since two units are not 
identical. The order for two spares is always needed. 
On the other hand, if the unit 1 fails before the time 
to, the operation is switched to the unit 2 and the 
expedited order for spares of both units is 
immediately made at the failure time. All original 
units are replaced by spares just after delivery which 
lasts a lead time L1. The switchover is assumed to be 
perfect and instantaneous. The state in which both 
units fail before delivery of spare units implies the 
system down.  
To obtain the optimal ordering policy parameter, 
there are developed: the expected cost per unit time 
in the steady state and the stationary availability. 
The expected time for one cycle is defined as: 
 

( ) ( )∫∫
∞

+++=
0

0

)()()]([ 120

0

11

t

t

oc tdFLttdFLttTE
j

                   (4) 

 
The expected inventory cost function for one cycle is 
given by: 
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where: 
crz – cost per unit time incurred for the residual 

lifetime of the original unit, which is still 
operable 

 

Applying the renewal theorem, the expected cost per 
unit time in the steady state is given by: 
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Moreover, the stationary availability A(to), defined as 
the probability that a system is operative in the 
steady state, is given by: 
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where: 
Toj(to)  – effective time of a system for j-th cycle, 

given by the following formula 
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Another very interesting problem regards to spare 
parts inventory planning in order to keep a 
production system in operating condition. Example 
of such a system consisting of n identical and 
stochastically independent production machines in k-
out-of-n reliability structure is given in [70]. 
Operational process of the presented system includes 
planned machines shutdown, during which alee the 
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failed elements in that maintenance cycle are 
replaced in order to increase system reliability. 
The problem considered in the presented paper 
regards to a priori planning of spares inventories 
required for the maintenance during a phased 
mission. In the system, it is possible to replace failed 
elements only during overhauls performed between 
two phases. The replacement of the failed elements 
at the end of phase k may be done by spare parts 
remaining unused from the proceeding overhauls and 
by Sk items planned to become available at time point 
tk. the failed elements, after replacement, are repaired 
and put into stock (inventory with returns system). 
The shortage can occur, when the demand over 
crosses the number of spare elements being available 
from stock, and then spares are obtained by an 
emergency order or by borrowing, penalty cost is 
paid, and the mission continues. The problem of 
spare parts planning is to find Sk for which stock out 
probabilities pspk at time point tk are smaller than the 
specified numbers αspk: 
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where: 
Cz  – function of expected total purchase 

and holding cost 
cz  – total purchase and holding cost per 

unit per unit of time 
tk – moments of planned overhauls,         

k = 1, 2, .., K 
Sk  – planned number of spare elements 

at tk 

pspk(S1,..., SK)  – probability of stock out at tk 
αspk  – maximal level of stock out 

probability in one maintenance 
cycle 

 

The model is solved with the use of a Markov 
process whose states are determined by the number 
of available spares and following assumptions: 
• perfect maintenance conditions, 
• elements of the system are identical and 

identically distributed.  
Many works which address the problem of 
determining the optimal ordering policy parameters 
for technical systems operating under block 
replacement policy base on using simulation 
processes (see e.g. [8], [26], [56]). Those models 
give the solutions to define optimal ordering policy 
parameters (e.g. order placement moments), define 
optimal PM parameters (moments of maintenance 
performance). However, such optimization problems 
typically entail the use of simplified system models 

and cannot give optimal solution. More complex real 
life systems behavior models, where the problem 
stated regards to multi-criteria optimization issue, are 
very complicated and are hardly to be put in an 
explicit analytical form.  
Another group of models where the problem of spare 
inventory optimization is investigated regards to the 
age replacement policy. The problem of age 
replacement policy with inventory restrictions can be 
found in e.g. [46], where authors investigated two 
inventory policies (s,S).  
According to the (1,1) inventory policy, operating 
element will be replaced in one of two situations: at 
age T or whenever the minimal repair cost Cnm is 
greater than some predetermined value max

nmC , 

whichever occurs first. When the unit must be 
replaced it will be ordered and delivered after a lead 
time L. during the time of waiting for spare element 
delivery system is in downstate. 
Optimization of the following parameters: lead time 
L and the age T when a system must be replaced base 
on minimization of total maintenance and inventory 
cost, defined by the following formula:  
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where: 
Fcw(x) – cost of repair distribution function 
pcnm  – probability that defined minimal repair cost 

is greater than max
nmC  

cd(L)  – function of costs associated with delivery 
performance (e.g. ordering cost, cost of lost 
production) 

 

This kind of model might correspond to some very 
critical but expensive piece of equipment where one 
backup is provided [46]. 
Second investigated inventory policy called (2,2) is a 
modification of described (1,1) inventory models. In 
this model, the system will always contain one unit 
in operation and one additional unit either in 
inventory or on order. According to he model 
assumptions, when an operating unit fails one of two 
possible situations can happen: 
• an additional unit being in inventory is 

immediately available for replacement, 
• an additional unit is on delivery – then the failed 

unit is repaired at all cost. 
No system downtime is ever allowed. 
The total cost function is defined as: 
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where: 
L
nmC – expected repair cost function during a lead 

time 
 

For more complicated problem investigation (see e.g. 
[69]) simulation processes, dynamic programming, 
integer programming, and nonlinear programming 
are the main tools suggested.  
Lots of models for the joint optimization of an 
optimal age-dependent inventory policy and PM 
policy regard to production systems subjected to 
random machine breakdowns (see e.g. [23], [35]). 
An interesting inventory problem is investigated in 
[62], where authors developed optimal number of 
inventories S = S1, S2, …, Sr when: 
• system performs under age replacement policy, 
• system failure rate increase with its age. 

The optimization problem is stated as: 
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where: 
nq  – number of types of spare elements in 

production machine 
)( qq Sp  – probability that there will be no stock out 

of spare elements type q during the 
overhaul 

sq  – initial inventory level 
max
zC       – maximal allowed level of inventory costs 

 

Solution of the stated optimization problem is 
received with the use of dynamic programming.  
However, in real life systems, failed element can be 
replaced or repaired, what needs to give an answer 
for the following questions: 
• when unit should be repaired instead of 

replacing? 
• how many spare parts should be ordered in 

order to meet demand and the ordering and 
inventory costs will be minimal? 

One of the models, which try to answer for these 
questions, is presented in [51]. In this paper joint 
stocking and replacement model with minimal repair 
at failure is considered. Authors assume, that Q units 
are purchased per order, operation unit is replaced 

after using for time interval Tci, if inventory level is 
(i-1) and minimal repair is performed for any 
intervening failures. The problem is to select optimal 
order quantity Q and replacement intervals Tci, so as 
to minimize the total maintenance and inventory cost 
per unit time, given by the following formula: 
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where: 
co  – cost of an order placing 
cwz  – replacement cost per unit  
i     – inventory level 
 

Investigated problem of optimal ordering and 
maintenance policy parameter definition is continued 
in many recent papers (see e.g. [58]). In this paper 
authors defined optimal ordering point to and optimal 
number of minimal repair Nnm before PM 
performance for single-unit system. Assumptions 
made in this model are the same as presented in [64]. 
Order for spare element is placed before nth failure 
of operational unit occurrence (moment tn), and lasts 
a lead time L. if operational unit fails before tn 
moment occurrence, system is in downstate till the 
moment tn+L. However, if unit fails after spare 
element delivery (kth failure), system is immediately 
replaced. Other failures are minimally repaired in 
time (0, tk).  
Optimization of parameters is performed with 
minimization of total expected cost function given 
by: 
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where: 
),(, yxf

kn tt
 – probability density function of  tn and 

tk 

Another interesting solution of the problem ‘replace 
or repair’ is given in [20], where a simple repair-time 
limit replacement problem with imperfect repair is 
considered. Authors investigated a single-unit system 
in which, when unit fails one estimates the repair 
time. If the repair can be completed up to a pre-
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specified time limit 
maxrT , the repair is started 

immediately, otherwise, the spare unit is ordered 
with a lead time L. the expected total cost per unit 
time in the steady state is given by the following 
formula: 
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where: 
kf  – penalty cost per unit time when system is in 

downstate 
T r – random repair time 
G(t) – p.d.f. for repair time; )(1)( tGtG −=  
λ

s  – failure rate of new unit 
λ

n       – failure rate of repaired unit 
 

The solution of the presented model is obtained with 
the use of graphical method based on the Lorenz 
transform. 
Main classification of the models regarded to 
optimization of inventory and maintenance policy 
parameters is presented in Table 1. 
 
2.2. Number of spare parts optimization 
models 
 

Presented above group of models cannot take into 
account the problem of obtained system reliability 
characteristics being influenced by chosen inventory 
policy. As a result, authors define second group of 
models which analyze optimization of inventory and 
maintenance policy parameters in order to provide 
maximal level of reliability/availability of a 
maintained system. The main classification scheme 
is presented in Figure 6. 
 

 

Figure 6. Number of spare parts optimization models 
classification [73] 
 

The problem of influence of spares provisioning 
decisions on reliability/availability of an operational 
system has been investigated for almost 50 years. 
First papers regard to defence systems modelling - 
see e.g. [1], where authors presented an analysis of 
inventory policy parameters and their influence on 
marine system maintenance process. Another 
example is presented in [12], where the problem of 
aircraft supply process is investigated. More recently 
other applications in civil sector have appeared, with 
the use of classical inventory methods: 
• deterministic models (e.g. Wilson method, (T,s) 

inventory policy, (s,Q) inventory policy), 
• probabilistic models (see e.g. [45]). 

Deterministic models are easy to calculate, however, 
the likelihood of obtained results is usually not 
satisfied.  
Moreover, most of the known models assume that 
supply process is a Poisson process (see e.g. [2]. 
According to this author, the problem of 
determination of optimal number of spare elements 
for irreparable system which will satisfy the demand 
during operational process time (0,t) is not possible 
to solve analytically without making an assumption 
about exponentially distributed operational time of a 
system. As a result, for this assumption a solution is 
given by the known formula: 
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where: 
no – number of used elements during operational 

process 
 

Number of necessary spare elements when 
replacement time is assumed to be negligible, is 
given by: 
 
   ( ) pontNP α≥≤)(                   (17) 

 
where: 
αp – rejection level 
 

Presented model can be used only for definition of 
necessary spare elements for single-unit irreparable 
system, thus, this is very simplified example, which 
cannot be applied for real life system optimization 
problems solving. However, there should be clearly 
stated that problem of optimal spare parts number 
definition can be easily obtained only for a small 
amount of cases, when following conditions are 
satisfied: 
• single-unit system or multi-unit system 

connected in series, 
• independency of operational units, 
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• time to failure is exponentially distributed. 
Taking also into account the following assumptions: 
• spare elements cannot degrade in time during 

being in stock, 
• failed elements can only be replaced not 

repaired, 
probability that during operational time (0,t) there 
will be no shortage, can be defined as: 
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where: 

),( tnp isi
– probability that during time (0,t) there will 

be no shortage of elements of type i 

ijλ   – failure rate of ith type element, which is in 

jth place in a system 
di  – number of elements of type i 
 

 

Table 1. Models of optimal spare part inventory policy for system under PM – an overview  

Inventory 
policy 

Preventive 
maintenance 

policy 

Operational 
system type 

Optimization 
criteria 

Model 
parameters  

Modelling method 
Planning 
horizon 

Papers 

L, T [46] 
single-unit 

T, S 
analytical 

[23, 35] 

T1, s, S [80] 
MINCs →  

Sk 
simulation processes 

[62] 

(s, S) 
Age 

replacement 
policy 

multi-unit 

MINCz →  sk, Sk dynamic programming [69] 

MINCs →  t0, t1 [21, 66] 

single-unit MINCs →
MAXA→  

[64] 
t0 

analytical 

[22] 

T, S 
analytical/simulation 

processes 
[3] 

(R, S) 

Sk [70] 

(S, s) 

multi-unit 

T, s, S 
simulation processes 

[56] 

(R, S) 

Block 
replacement 

policy 

single-unit / 
multi-unit 

MINCs →  

T, R, s 
analytical/simulation 

processes 
[8] 

(s, Q) S, Q [51] 

ROP in the 
moment of 

nth 
maintenance  

Block 
replacement 
policy with 

minimal 
repair 

single-unit MINCs →  
t0, Nnm 

analytical 

infinitive (∞) 

[58] 

s    – critical inventory level  

S    – maximal inventory level 
T   – time between orders performance 

R  – reordering point 

Q   – ordering quantity 

 
When the presented above assumption cannot be 
satisfied, other modelling methods (instead of 
analytical) must be implemented, like e.g. simulation 
processes (see e.g. [11]), heuristic methods (see e.g. 
[77]), or databases of exploitation processes (see e.g. 
[42]). 
Problem of optimal number of spare elements 
definition for multi-unit system is investigated in 
[72]. Presented model is aimed at maximization of 
system reliability taking into account the cost 
constraints:  
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where: 
Pij(t)– probability that system is in ith state for jth 

type of spare elements 
qi – probability of ith type spare element 

availability 
Czi – cost of ith type spare element availability 
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xi – number of ith type spare elements being in 
stock 

m     – number of subsystem components 
 

There can be also found lots of optimization models 
aimed at defining the number of spare units in order 
to maximize steady-state system availability. One of 
interesting models is presented in [6], where is 
considered inventory model with returns for 
repairable system with cold standbys and non-zero 
replacement time. In the investigated multi-unit 
system, when a failure occurs the defective units are 
replaced by spare ones, which must be available. The 
failed units after replacement are sent out for repair. 
Repaired units are good-as-new and are put in a pool 
of spares. When the situation occurs, that an i unit 
fails and there is no good spare, the system is 
maintained by repairing a failed i unit. The problem 
is how many spares ought to be allocated and to 
where. The solution bases on availability function for 
a mission time (0,T), given by:    
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where: 
S*  – vector of optimum spare units for subsystems  
Csj  – total jth cost of the system for mission time 

(0,T) 
Cmax

sj – maximal allowed level of jth cost 
 

Taking into account the following conditions: 
• operational and repair times are exponentially 

distributed, 
• spare units do not fail during a storage time, 
• repaired units are good-as-new, 

the computation of steady-state availability, defined 
by formula (20), is done by using Markovian chains.  
Models for spare components with exponential, 
gamma, normal and Weibull time to failure 
distribution using a renewal process are developed in 
[38]. In the presented paper, authors consider a 
system with n components connected in series. 
Maintenance process regards to the replacement of 
failed component by a new identical spar element. 
The objective is to maximize availability of the 
system satisfying constraints on costs and weight, 
what can be written by:  
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where: 
nmax

wi – maximum number of spares allowed for 
component i 

)(tF n
i

 – n-fold convolution of function Fi(t) 
Fi(t)  – time to failure distribution of component i 
czi – cost of spare for component i 
wi – weight of each spare for component i 
Wmax – maximum allowed weight 
 zij – binary variable: 
 

   




=
otherwise

icomponentforselectedaresparesjif
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The above optimization problem is solved using an 
efficient branch and bound procedure. 
To sum up, taking into account the presented above 
considerations, there can be defined the main 
drawback of existing number of spare part 
optimization models: 
• most of the work is based on an item approach 

rather than system approach, 
• simple solutions can be obtained only for a 

small amount of cases; models require the use of 
special purpose algorithms to handle large 
problems.  

 
2.3. Storage reliability models 

Another important problem regards to reliability of 
the spare elements being in stock and its influence on 
operational performance of a maintained system. 
Some elements e.g. electronic equipment can and 
does fail during the time, when they are awaiting for 
long periods of time prior to usage. As a result, there 
can be stated a question: what is the spare element 
reliability after being in storage for defined period of 
time (e.g. X years)? The main classification scheme 
of the models, which investigate problem of storage 
reliability, is presented in Figure 7. 
One of the first works developing storage reliability 
with periodic test model for electronic equipment is 
presented in [Marti84]. Model gives the possibility to 
calculate the expected number of failures during one 
periodic test internal, with the assumption about 
exponentially distributed processes in a system: 
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where: 
T 4 – time in which the item is in storage between 

two periodic inspections performance 
T T – test time 
λS4 – failure rate of an item being in storage 
λC – failure rate of a switching process 
vin – number of period test cycles during storage 

process 
 

 

Figure 7. Storage reliability models classification 
[73] 
 
The storage reliability problem has been of particular 
interest since 1960s, especially in safety-related 
systems and in the military industry, where the 
storage time is often the largest portion of the total 
life time. These systems have to be very reliable 
upon demand. In paper [79], authors consider model 
of storage reliability as a combination of the inherent 
storage failure probability with the initial failure 
probability, which is usually assumed to be 
negligible. The storage reliability at moment t is 
given by the following formula: 
 
   0),()( 0 ≥= ttRRtR op

     (25) 

 
where: 
R0 – probability that a unit is good at time zero 
Rop(t) – inherent storage reliability 
 

The estimation of the initial reliability and the failure 
rate during the storage is presented in the exponential 
case.  
Recent storage reliability models include also 
inspection and maintenance operation performance 
(see e.g. [28], [31]). In the presented article, 
considered system consists of two units, unit 1 is 
inspected and maintained to a good-as-new condition 
at periodic times kT (k=1, 2, ....) to hold a higher 
reliability than a pre-specified value Rm. Unit 2 is not 
maintained, i.e. its hazard rate remains unchanged by 
nay inspections. A system is overhauled if the 

reliability becomes lover than Rm. For such an 
inspection model an average cost until overhaul is 
given by: 
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where: 
Nin1 – numbers of inspections done during a 

system storage   
TRm – random time to system reach the level of 

reliability Rm 
 

Optimization process is given for Weibull 
distribution of time to failure of unit 1 and 
exponential distribution of failure process of unit 2. 
Calculation of a problem of optimal inspection 
policy for a storage system with periodic inspection 
can be also found in [29]. In the considered model, 
system is replaced at detection of failure or at time 
(K+1)Tin, whichever occurs first. The total expected 
cost until replacement is given by: 
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where: 
cdw1 – cost of system downtime elapsed between 

failure and its detection per unit of time 
 

Extended optimal inspection policy for a system in 
storage is developed in [30]. In the presented article, 
system consists of units 1 and 2, where unit 2 
consists of units 21 and 22. That is, a system consists 
of a series system with independent unit 1, unit 21 
and unit 22. Authors consider the followed extended 
inspection policy: 
• periodic inspection: when a system is inspected 

at time interval jTin, unit 1 is maintained and is 
like new after every time interval Tin, unit 2 is 
not done, i.e. its hazard rate remains unchanged 
by any inspections, 

• periodic replacement: a system is partially 
replaced at time interval NTin (unit 21 is 
replaced, unit 22 is not done, i.e. its hazard rate 
remains unchanged by any replacement), 

• overhaul: a system is overhauled if the 
reliability becomes equal to or lower than Rm. 

For the presented extended inspection policy, the 
average cost until overhaul is given by: 
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where: 
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N21
w – unit 21 replacement number 

c21
w1 – cost of replacement of unit 21 

Tq – time to system overhaul since (N21Nin1+nq)th 
inspection 

N21
in1 – number of inspections since finishing N21th 

replacement till system overhaul 
 

An optimal inspection time and an optimal 
replacement time are numerically discussed.  
 
2.4. Multi-echelon system models 
 

The reparable-item inventory problem has received 
much attention in the logistics literature. The models 
presented above regards to single-echelon systems. 
However, for advanced technical systems, such as 
engines, or airplanes, high system availability is 
enhanced thanks to multi-echelon inventory system, 
in which usually are two or more echelons equipped 
with repair and stocking facilities. The lower echelon 
consists of a series of bases which are first level 
maintenance stations. The upper level, usually called 
a depot, provides second level support (Figure 8). 
Usually items are sent to the higher echelon if local 
repair is technically impossible, i.e. if the local repair 
shop does not have appropriate equipment or skills.  
 
 

 
Figure 8. Multi-echelon system 
 
The most important results on divergent multi-
echelon inventory systems are reviewed in [19]. 
Authors concentrate on two types of policies: 
ordering policies and installation stock policies. In 
the second literature review, presented in [17], 
authors focus on describing those models which can 
be practically applied. Moreover, authors revisit in 
detail Multi-Echelon Technique For Recoverable 
Item Control (METRIC) mode and its variations and 
discuss a variety of more general queuing models.  
Repairable items are referred to as components, 
which are expensive, critically important and subject 
to infrequent failures. When they fail, they should be 
repaired and reused after repair since they are too 
expensive to be discarded. Thus, one way to achieve 
high operational availability of such system is to 

acquire enough spare parts to provide immediate 
replacement of damaged components, what needs to 
have effective supply system – usually multi-echelon 
system. This problem is especially important for 
military systems, where main problems regard to: 
• evaluation of time-varying availability in multi-

echelon inventory system (see e.g. [39], [46], 
[40]), 

• analysis of supply system of aircraft systems 
(see e.g. [32], [54]), 

• optimization of multi-echelon service part 
supply system for marine system [60], [61]), 

• determination of number of spares in an 
inventory/repair system which supports 
equipment with scheduled usage (example of 
NASA’s space shuttle – see [4]). 

Described models are aimed at maximization 
military system availability under the cost 
constraints. The most commonly used modelling tool 
is Monte Carlo simulation.  
The review of the main allocation models for multi-
echelon systems is given in Table 2. Moreover, in 
[5], there is presented a comparison of allocation 
policies in a two-echelon inventory model.  
Research on multi-echelon inventory models has 
gained importance over the last 30 years. For large 
multi-component system the problem of optimal 
allocation policy definition cannot be solved 
analytically. Monte Carlo simulation (see e.g. [59]), 
branch and bound algorithm (see e.g. [9]), or queuing 
theory (see e.g. [13], [16], [34], [37]) are the main 
tools suggested. 
 
3. An example  
 

Consider a repairable system of systems under 
continuous monitoring, in which there are integrated 
two independent systems: operational and its 
supporting system. Both systems have only two 
states: upstate, when they are operable and can 
perform its specified functions, and downstate, 
otherwise. 
The system of systems total task is defined as the 
continuous performing of exploitation process. 
Moreover, in the presented model the logistic support 
functions are narrowed down only to providing the 
necessary spare parts to the operational system. As a 
result, the logistic support system is inoperable when 
there is no capability of supplying the operational 
processes with necessary spares.  
The operational system is composed of M identical 
elements working in a reliability structure, which 
determines the moments when the system goes to a 
down-state. 
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Table 2. Multi-echelon system models – an overview 

Number of 
echelons 

Optimization 
criteria 

Modelling 
method 

Papers 

 push i pull 
strategies 

[27] 
MINCs →  

[37] analytical with 
queuing theory [16] 

MAXW →0
 

[59] simulation 
processes [34] MINCs →  

MINo →α  analytical with 
queuing theory 

[33] 

two-
echelon 
system 

MINnocz →  
branch & 
bound 
algorithm 

[9] 

three-
echelon 
system 

MINCs →  

MAXA→  
Markov 
processes 

[13] 

four-
echelon 
system 

MINCC fh →+  [18] 

n-echelon 
system 

MINo →α  

analytical 

[68] 

oczn   – mean number of awaiting 
orders in a system  

W0   – fill ratio  

αo     – service level 

 
Let’s also assume that elements’ failures are random 
in time, and each failure entails a random duration of 
repair before the element/system is put back into 
service. Let’s also assume that any information about 
failures in this system is reliable and comes 
immediately to the logistic system.  
In the investigated model, when logistic support 
system is in up-state, the ability of the system of 
systems depends only on: 
- the time, when the operational system is 

operable, 
- the time of technical system repair. 
In the situation, when the supporting system is 
inoperable due to the lack of spare parts, the system 
of systems availability also depends on the logistic 
delayed time, which is necessary to solve logistic 
problems. 
Moreover, if there is restricted the system of systems 
total task completion time, defined as the time of 
operational system recovery process, the system of 
systems remains in upstate if this defined time will 
be shorter than time resource. Otherwise, the system 
of systems will fail and remain in downstate till the 
end of delivery process. 
Consequently, the following additional model 
assumptions are taken into account to define the 
system of systems performance process: 
• randomness and independency of all the 

performed processes, 

• critical inventory level (CIL) used as a stock 
policy, 

• the individual time redundancy used to model 
the system of systems performance [doktorat]. 

To the best authors’ knowledge, an effective way for 
achieving the reliable operational systems logistic 
support especially bases on meeting two targets: 
reliability/availability and cost constraints:   
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where:  
Csj   – the expected total system of systems costs in a 
jth procurement cycle 
Tj   – the random time of the jth cycle 
A    – the system of systems’ availability ratio 
Amin  – the limiting availability ratio of system of 
systems performance 
 

For the investigated model, the expected total system 
of systems cost in a jth procurement cycle may be 
calculated as [73]: 
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where:  
cf  – operational element replacement cost 
cp  – cost of one spare purchasing 
I(t)  – the quantity on-hand at time t 
Pnnj  – probability that system of systems fails 
 

The expected procurement cycle time is defined as 
follows [73]: 
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where:  
E[To] – expected time to failure of operational 
system, E[Tr] – expected replacement time of 
operational system 
E[τ]  – expected supply task performance time 
 

The basic formula for steady-state availability ratio 
assessment is expressed as follows [Gniedenko]: 
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For the presented system of systems with time 
dependency, the availability ratio in one procurement 
cycle is expressed as [73]: 
• for the system of systems with negligible 

replacement time of operational element: 
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where:  
E[ξ] – expected system of systems downtime caused 
by the time of operational system recovery 
Q     – order quantity 
 

• for the system of systems with non-negligible 
replacement time of operational element: 
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More information can be found in [73].  
 
3.1. Simulation model and obtained results  

The analytical model of performance of the 
presented system of systems with time dependency is 
investigated in e.g. [74], [75, [76]. 
The analytical results of the modeled problem can be 
obtained only for a small amount of cases, when the 
operational system is a single-unit system, the 
performed processes are modeled according to the 
exponential distributions, etc. (see. [73]). Thus, there 
can be written the following conclusion, that this 
analytical model is an oversimplified version of the 
real system behavior, so the obtained results are not 
traceable to practical situations. 
To overcome this problem, there is proposed a 
simulation model of time dependent system of 
systems performance, which has been developed 
with the use of GNU Octave program. The 
simulation algorithm of the modeled system of 
systems is given in Figure 9. 
The system of systems level of availability ratio, the 
probability of system of systems downtime 
occurrence, or economic results strongly depend on 
the operational system reliability structure. That is 
why, the model of time dependent system of systems 
performance was created for the three various system 
reliability structures – series, parallel and “k out of 
n”.  
 

  
Figure 9. Simulation algorithm of time dependent 
system of systems performance [73] 
 
The simulation results of the modeled system of 
systems have been carried out for the input 
parameters, presented in Table 3. 
The main reliability and economic results are 
presented in Figures 10 - 15. 
 

  
 

Figure 10. System of systems availability ratio for 
various levels of order quantity of spare elements 
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Table 3. Input parameters of modeled system of 
systems 

 Initial 
value 

Explanation of  denotation 

Ao 1 
Weibull’s shape parameter of single 
operational element time to failure 

1/Bo 100 
Weibull’s scale parameter of single 
operational element time to failure 

Ar 1 
Weibull’s shape parameter of single 
operational element replacement time 

1/Br 10 
Weibull’s scale parameter of single 
operational element replacement time 

AL 1 
Weibull’s shape parameter of lead-time 
time 

1/BL 1000 
Weibull’s scale parameter of lead-time 
time 

Aγ 1 
Weibull’s shape parameter of time 
resource time 

1/Bγ 10 
Weibull’s scale parameter of time resource 
time 

k 1 “k” out of “M” 

M 5 
number of elements working in an 
operational system 

s 5 critical inventory level 

Q 30 order quantity 

cw 50 replacement cost of a unit 

co 50 ordering cost 

cp 50 purchase cost of one unit 

ch 100 inventory unit holding cost per unit time 

kf 1000 
penalty cost of system of systems failure 
occurrence 

cdw 1000 cost of system of systems downtime unit  

 

 
 

Figure 11. The system of systems downtime 
probability for various levels of order quantity of 
spare elements 
 

 
 

Figure 12. Expected cost per unit time function for 
various levels of order quantity of spare elements 
 

 
 

Figure 13. Expected cost per unit time function for 
various critical inventory levels 
 

 
 

Figure 14. System of systems availability ratio for 
various lead-time lengths 
 

 
Figure 15. Expected cost per unit time function for 
various lead-time lengths 
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The ordered and delivered spare parts quantity 
determines the length of a single procurement cycle 
(time that elapses between the two consecutive 
moments when the inventories on-hand drop to a 
critical level). As a result, the bigger the ordered 
quantity, the higher mean stock level in the system 
and rarer deliveries performed.  
The expected costs incurred by the system of systems 
with a different-structured operational system are 
mainly determined by the inventory holding costs 
and system of systems’ downtime costs (Figure 12). 
When the level of ordered quantity rises, the 
expected costs function has the local minimum in 
case of series and k out of M systems. It is a result of 
rarer deliveries and downtimes occurrence that arise 
from inventory lack. On the other hand, the more 
spare elements are purchased, the higher inventory 
holding costs are incurred.  
The worst solutions for the system of systems with 
operational system in parallel occur when the 
ordered quantity Q is a multiple of M. If all M 
elements are replaced and there is no spares 
remaining in a logistic system, there is a higher 
downtime probability and its economical 
consequences, than if there are some elements in a 
stock. This downtime costs together with the 
inventory holding costs have the greatest influence 
on the system of systems economic results.  
The same effect can be seen when availability of 
system of systems with operational system in parallel 
is analyzed. The system of systems reaches the 
lowest availability ratio level when Q is a multiple of 
M. For system of systems with other reliability 
structures of operational systems, the rarer and 
bigger deliveries, the higher availability ratio is 
achieved.  
The level of ordered quantity has also the influence 
on the probability of system of systems downtime 
occurrence, what is especially evident for a series 
structure case (Figure 11). A lower level of ordered 
quantity forces frequent deliveries, and as a result, 
there is higher probability that the possible delays of 
the delivery cause the system of systems downtime. 
The next parameter of the procurement process, 
which affects the system of systems performance, is 
the critical inventory level (Figure 13). The higher 
critical inventory level, the higher the mean 
inventory level in a system what incurs higher 
inventory holding costs. However, the higher s level 
gives also a possibility to reduce the delivery delay 
consequences what has a positive impact on system 
of systems reliability results. 
Moreover, there also can be seen the influence of 
lead-time length on the system of systems behavior. 
The longer lead-time affects especially the reliability 
characteristic of the system of systems (Figure 14). 

On the other hand, the longer the lead-time, the 
lower inventory holding costs and the higher 
downtime costs incurred, what is connected with the 
bigger probability of system of systems downtime 
occurrence. This relation can be seen in the Figure 
15 as a local minimum of the Cs value.  
In order to model the time dependencies between the 
operational system and its logistic support system, 
there have to be identified basic relations, which 
result from the system of systems structure, 
components’ parameters, or processes’ execution 
times. 
In other words, the presented model especially can 
support decision processes in the area of supply task 
performance requirements. Especially gives a 
convenient tool to decide which supplier can provide 
the desirable time of supply delivery in order to 
achieve a defined system of systems’ operational 
capability. 
On the other side, the developed model can be 
helpful to assess the reliability requirements of 
operational system elements in order to provide the 
continuous system of systems’ total task performance 
 
4. Conclusion 
 

To sum up, all the presented models from the area of 
supply process parameters optimization, when 
system is maintained according to defined PM, can 
be divided into two groups:  
• searching effective optimization methods for 

already known models (see e.g. [6], [47]), 
• searching for system models in which new 

assumptions are made (e.g. new reliability 
structure, dependent elements in a system) (see 
e.g. [21], [22]).  

Moreover, literature on modelling relations between 
logistic and operational systems is scarce. Up to now, 
the interactions between operational system and its 
supporting system have not been clearly investigated. 
The research has focused on the evaluation of 
reliability and economical characteristics for both 
systems in the separate way.  
Moreover, the logistic systems have been evaluating 
and designing mostly in terms of: inventory 
modelling, supply processes organization, and 
transportation processes modelling.  
However, the simultaneous setting of all structural 
parameters (e.g. redundancy, repair shop capacity) 
and control variables (e.g. spare part inventory 
levels, maintenance policy parameters, repair job 
priorities, time resource) is mathematically a hard 
problem, and cannot be done without many 
simplified assumptions taken.  
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