COMPUTER SCIENCE e 17 (2) 2016 http://dx.doi.org/10.7494/csci.2016.17.2.225

Abstract

Keywords

Citation

P10TR FALISZEWSKI
MACIEJ SMOLKA

ROBERT SCHAEFER
MACIEJ PASZYNSKI

ON THE COMPUTATIONAL
COST AND COMPLEXITY
OF STOCHASTIC INVERSE SOLVERS

The goal of this paper is to provide a starting point for investigations into a
mainly underdeveloped area of research regarding the computational cost ana-
lysis of complex stochastic strategies for solving parametric inverse problems.
This area has two main components: solving global optimization problems and
solving forward problems (to evaluate the misfit function that we try to minimi-
ze). For the first component, we pay particular attention to genetic algorithms
with heuristics and to multi-deme algorithms that can be modeled as ergodic
Markov chains. We recall a simple method for evaluating the first hitting time
for the single-deme algorithm and we extend it to the case of HGS, a multi-
deme hierarchic strategy. We focus on the case in which at least the demes in
the leaves are well tuned. Finally, we also express the problems of finding local
and global optima in terms of a classic complexity theory. We formulate the na-
tural result that finding a local optimum of a function is an NP-complete task,
and we argue that finding a global optimum is a much harder, DP-complete,
task. Furthermore, we argue that finding all global optima is, possibly, even
harder (#P-hard) task. Regarding the second component of solving parametric
inverse problems (i.e., regarding the forward problem solvers), we discuss the
computational cost of hp-adaptive Finite Element solvers and their rates of
convergence with respect to the increasing number of degrees of freedom. The
presented results provide a useful taxonomy of problems and methods of stu-
dying the computational cost and complexity of various strategies for solving
inverse parametric problems. Yet, we stress that our goal was not to deliver
detailed evaluations for particular algorithms applied to particular inverse pro-
blems, but rather to try to identify possible ways of obtaining such results.

hierarchic genetic strategy, inverse problem, hybrid method

Computer Science 17 (2) 2016: 225-264

225

http://journals.agh.edu.pl/csci/

226 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

1. Introduction

Studying computational cost and complexity is one of the most important tasks in
the analysis of algorithms. Generally, the goal of such considerations is to establish
a relationship, possibly as a function, between the resources necessary to solve a
particular problem (e.g., computational time or memory usage), and the amount of
data to be processed or the quality of the results (e.g., their numerical accuracy).
Studying computational cost is particularly important in the context of algorithms
that are used to simulate physical, environmental, and technological phenomena as
well as in the context of identification, optimal design, and control problems. This
is so, because such problems are pertinent to a large number of real-life engineering
tasks; understanding their computational complexity translates to direct practical
benefits. Indeed, studies of the computational costs of algorithms provide a means
of measuring their quality and form a basis for speeding up existing computational
systems. The results of complexity analysis may lead to new algorithmic ideas and
new architectural inventions that allow one to face new, more-involved problems.

Throughout this paper, we focus on the computational cost of solving inverse
problems. Inverse problems form an important area of contemporary research related
to fundamental problems in science and engineering. Typically, an inverse problem
consists of finding some unknown value (e.g., a property of a medium or of an object)
based on some given observations (e.g., based on the response of this medium or
this object to a probing signal). A general framework of such problems provides an
analytical means of building mathematical models, establishing physical constants for
these models, and giving insights into the design of experiments [4,27,74].

Typically, a mathematical formulation of an inverse problem is composed of the
following: (a) a forward problem model, which mimics the response of a real-word
system under the assumptions that all relevant parameters are known; (b) a misfit
function, which measures the discrepancy between the simulated system and the me-
asurements taken from the real-world system; and (c) a global optimization problem,
often equated with the inverse problem itself, where the goal is to find parameter va-
lues for the forward problem model — from a prescribed admissible parameter domain
— that minimize the misfit function.

Inverse problems are not frequently well-posed in the sense of Hadamard; i.e., the-
ir solutions might not be unique and/or might be unstable under data perturbations.
Thus, they pose severe numerical difficulties.

There are a number of reasons for the ill-posedness of a given inverse problem.
First, it might be an inherent feature of its mathematical formulation. This source of
its ill-posedness may be possible to anticipate based on the physical evidence regar-
ding the system at hand (see; e.g., the work of Cabib et al. [12]). Second, ill-posedness
may appear as a consequence of uncertainties in the misfit function. For example, the
misfit function might be represented inaccurately due to insufficient knowledge of the
problem due to errors in data measurements or errors regarding its representation
(see; e.g., the works of Koper et al. [31], Meruane and Heylen [36], and Caicedo and

On the computational cost and complexity of stochastic inverse solvers 227

Yun [13]). Finally, the ill-posedness of the problem may result from approximation
and arithmetic errors introduced throughout the computation. Some global optimi-
zation strategies (both deterministic and stochastic) may produce artifacts in the
form of local objective extrema (see; e.g., the work of Barabasz et al. [7]). Moreover,
an unavoidable error of misfit evaluation makes it difficult to distinguish the global
minimizers among many local ones.

There are two main components involved in solving a given inverse problem.
First, one needs an algorithm for solving the forward problem. Second, one needs an
appropriate global optimization strategy. Regarding the first issue, we consider inverse
problems where the forward problems are modeled through partial differential equ-
ations (PDEs). There are plenty of methods for solving boundary value problems for
PDEs, and broad literature is available. We focus on methods for solving variational
PDEs due to their efficiency and flexibility [14,16,17,20].

The choice of the second component (the global optimization strategy) is far
more involved, because many standard optimization methods are not applicable due
to the ill-posedness of the problems. For example, convex optimization methods such
as gradient-based ones may be inapplicable because of the misfit function irregularity
(e.g., they may fail to find some of the solutions due to the misfit function multimo-
dality or insensitivity in some areas of the admissible domain). Such problems only
become larger with the increasing multimodality of the misfit function or appearan-
ce of large plateaus, in which case popular regularization methods tend to return
artifacts rather than real solutions [22].

Thus, it is often necessary to seek other optimization strategies. One possibility
is to use stochastic metaheuristics, which are solution methods that orchestrate an
interaction between local improvement procedures and higher-level strategies to cre-
ate a process capable of escaping from local optima and performing a robust search
of a solution space [25,37,39]. Among metaheuristic search strategies, we highlight
evolutionary algorithms (EAs; we point the reader to the works of Burczynski and
Beluch [10], Burczynski et al. [11], and Meruane and Heylen [36] for some examples of
using EAs to solve inverse problems). Our particular interest is devoted to EAs that
can handle misfit multimodality, such as niching and sequential niching strategies (see,
e.g., the work of Mahfoud [35]), Hierarchic Genetic Strategy HGS [5,7,24,29, 30, 62],
and adaptive, stochastic multi-start method (see, e.g., the work of Telega et al. [76]).

Perhaps the main disadvantage of stochastic global optimization strategies is
their enormous computational cost, caused by a huge number of the objective eva-
luations. Each objective evaluation requires one to solve the given forward problem
(which typically is computationally intensive) and, based on the result, to compute
the misfit function. Thus, to decrease the computational cost of a stochastic strategy,
one should attempt both to reduce the number of objective evaluations and decrease
the computational cost of the forward problem solver.

The study of the computational cost and complexity of strategies for solving
inverse problems is quite complicated. The goals of this paper are to develop a preli-
minary taxonomy of necessary definitions and to present preliminary results regarding

228 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

the computational cost of crucial parts of several strategies for solving inverse pro-
blems. do not aim to deliver detailed evaluations for particular strategies; but, we
rather wish to find ways of finding such types of results.

The paper is organized as follows: in Section 2, we provide necessary background
information, including broad introductory information regarding several strategies for
solving inverse problems. In Section 3, we present basic features and tools for dealing
with our problems, and in Section 4 we present some preliminary results. We conclude
in Section 5.

2. Preliminaries

In this section, we provide necessary background information regarding inverse pro-
blems and various strategies for solving them.

2.1. Forward and inverse problems

We use the following (quite general) definition of an inverse problem. The goal is
to find the value of parameter w* € D that is a solution of the following global
optimization problem:

arg mingep {f(uo, u(w)) : Au(u(w)) =0}, (1)

where A, is the family of forward problem operators, u(w) € V is the direct solution
corresponding to w, u, € O is an observation (typically a measured quantity related
somehow to the direct solution), and f : O x V. — R, is the misfit function. In a
typical situation, V' is a Sobolev space and A : V — V' is a differential operator
between V and its conjugate V'. In this work, we restrict our attention to those inverse
problems where:

1.V C (H"(2)% r,d € N, is a set of real- or vector-valued, generalized functions
defined on the bounded domain Q ¢ RY, N € N, with the Lipschitz boundary
0Q (see; e.g., the books of Denkowski et al. [18,19]), so V 3> v : Q — Ré(or C%),
where d is the finite dimension of the candidate solution. Moreover, the definition
of V may include some other assumptions imposed by the boundary conditions
on the solution u(w).

2. The admissible set D is a subset of L>°(Q — K), where K is a proper subset
of the set of parameter values; e.g., a set of tensor fields satisfying appropriate
physical restrictions. Typically, D is a set of uniformly bounded step functions
corresponding to a predefined, regular decomposition of 2. In the sequel, we shall
restrict the admissible set D to a discrete or even finite representation.

3. The operators A, have an ‘elliptic-like’ form, i.e., (4, (u(w)),v) = a(w;u(w),v)—
I(v) for all v € V, where [belongs to V' and a is a function, a : D x V xV — R,
that satisfies a(w,u,-) € V' for allw € D,u € V.

On the computational cost and complexity of stochastic inverse solvers 229

Summing up, the forward problem under consideration has the following form:
Given w € D, find u € V such that:

(Au(u),v) =0, YveV,

or, in other words:
a(w;u,v) =1l(v), YveW. (2)

We consider only well-posed forward problems. That is, we require that, for each
w € D, there exists exactly one u € V satisfying (2), and the solution depends conti-
nuously on the right-hand side . Moreover, we assume that u(w) can be sufficiently
well-approximated by Galerkin solutions of (2). Typical assumptions ensuring these
features are the uniform Lipschitz continuity and coercivity (a condition stronger than
ellipticity) of the operators A, (see; e.g., the book of Ciarlet [14]). Thus, with a minor
abuse of notation, we use u(w) to denote the solutions for our forward problems.

We say that problem (1) is inverse to the forward problem (2). We refer to inverse
problems of this form as inverse parametric problems (or inverse coefficient problems)
for partial differential equations.

Typically, the misfit function has the form of the ‘energy’ discrepancy |€(u(w)) —
&ol, where E(u(w)) = ta(w;u(w),u(w)) — l(u(w)) and & is the measured energy
associated with the observation ug. The misfit function might also have the form of
the boundary value discrepancy ||u(w) —ug||r, where || - ||r is the norm (or semi-norm)
evaluating the trace of the function from V (see; e.g., the books of Denkowski et
al. [18,19]), or the form of the discrepancy |L(u(w)) — Lo| in the so-called ‘quantity of
interest’, where L € V' and Lg is a measured value of L associated with observation ug.
Finally, the misfit function might be a composition of all of the expressions mentioned
above.

2.2. Adaptive forward solvers

Let us now discuss a group of numerical methods for finding approximate solu-
tions to the forward problem (2) by using the self-adaptive hp—Finite Element Me-
thod (hp—FEM) (further references are available in the literature [14,16,17,20, 53]).
These methods consists of constructing a subspace Vj,, C V with finite basis
{e}, p}i=1,..N > Nnp < 400. The subspace Vj, , is constructed by partitioning the
solutions domain 2 into a finite number of non-intersecting polyhedrons — called ele-
ments —and by defining basis functions as polynomials satisfying prescribed conditions
over the vertices, edges, faces, and interiors of the elements. Each non-zero restriction
of the basis function eﬁ'l’p to a given element is called a shape function.

Assuming the value of parameter w € D is given, the approximate solution wuy ;
to (2) is obtained as a linear combination of the basis functions:

Nh,p
th’ = Z u;z,p ez,p' (3)
=1

230 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

Using a similar representation for v € V3, C V, we obtain a system of linear equations
for (2):

Nh‘p . .
Z up, , @ (g; Chp> eiw> =1 (eilJ)) j=1,..,Npp. (4)
i—1

The coefficients uﬁl,p are called degrees of freedom. The detailed mathematical de-
scription of the FEM method (as applied to the elliptic variational problems) may be
found in Chapter 2 of the book of Ciarlet [14], while the convergence of this method for
various FEM spaces is discussed in Chapters 3 and 4, or in the book of Descloux [20].

The accuracy of the approximation provided by the FEM method depends on the
quality of the basis functions. The self-adaptive hp—FEM method is an algorithm for
the automatic construction of the basis functions, delivering an exponential conver-
gence of the accuracy with respect to the mesh size (i.e., with respect to the partition
of the space into elements). The algorithm has been formulated in the works of Racho-
wicz et al. [53], Demkowicz [16], and Demkowicz et al. [17], and can be summarized
in the following steps:

1. Generate an initial basis functions family {e};’p}i:l,m, N4, Spanned over the so-
called initial mesh. The initial mesh becomes the so-called coarse mesh for the
first iteration.

2. Solve the coarse mesh problem by computing the degrees of freedom {u}lp},
i =1,...,Npp. After this step, we obtain an approximate solution up , for the
coarse mesh in the form (3).

3. Generate the fine basis {e%’p+1}i:17..,’N%‘p+l spanned over the so-called fine mesh.

The fine mesh is obtained from the coarse mesh by breaking each coarse mesh
element into several elements (their number depends mainly on the £ dimension
N and on the type of the element) and by increasing the polynomial order of
approximation uniformly by one.
4. Solve the fine mesh problem by computing the degrees of freedom {uiﬁm +1}’
i=1,.., N%7P+1' After this step, we obtain the fine mesh approximate soiution

b opt1

N
_ 7 7
Uhpt1 =) Uk opt1 Ch pr1 (5)
=1

5. Select an optimal refinement strategy for each finite element from the coarse
mesh. This selection process should be based on the error estimations ||le,¢||%,
where €, = U iy = Uhp is computed using the coarse mesh and the fine mesh
solutions (see the book of Demkowicz [16]). The optimal refinements contain a list
of h refinements (requests to break some elements) and p refinements (increasing
some polynomial orders of approximations by one).

6. Execute all required h refinements.

7. Execute all required p refinements.

On the computational cost and complexity of stochastic inverse solvers 231

8. If the maximum relative error of the solution is greater than the required accuracy,
go to Step 2. The new optimal mesh becomes the coarse mesh for the next
iteration. Otherwise, output the current solution.

The self-adaptive hp—FEM algorithm has also been redesigned by using the graph
grammar approach [44-48, 55, 72] and has been efficiently implemented on parallel
machines [49,51,52].

Since the applied approximation is an internal one (i.e., Vj, C V, Vh,p), each
approximate solution is obtained unambiguously (this, again, justifies the use of func-
tional notation up p(w)).

2.3. Population-Based Stochastic Optimization

Population-based stochastic search strategies are well-known from their many incarna-
tions: Monte Carlo Methods, Simulated Annealing, Genetic and Memetic Algorithms,
Ant Colony Search algorithm, etc. (see; e.g., the books of Pardalos and Romeijn [43],
Glover and Kochenberger [25], and Schaefer [57] for references). From a high-level po-
int of view, in each time step t, these strategies transform a multiset P; of candidate
solutions to the global optimization problem, called the population (see Figure 1),
and eventually — when some stop condition is met — return the best solution found.
A single time step of these strategies is traditionally referred to as an epoch.

t<—0
Create initial
sample £

l

Evaluate and
modify sample 7,

Yes
Stop condition
satisfied?

Produce the next
epoch sample P,

Figure 1. General scheme of the single-deme, population stochastic search.

Typically, the most computationally intensive part of these strategies is the evalu-
ation of the current population P;. It is especially costly in the case of solving inverse
problems of the form (1), because computing the misfit value f(u,,u(w)) for each
single individual requires computing uy, p(w), by executing the hp—FEM algorithm.

232 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

Each population-based stochastic search algorithm is associated with a sequence
of probabilistic measures {p’};—1 23 .. C M(D) that govern the process of sampling
the populations. That is, each population P; is obtained by sampling a number of
individuals from D according to measure p*. The initial population Py is obtained by
using p°, which is typically the uniform distribution over the whole D. Distributions
p! might be independent from each other, or p’ may depend on the earlier measures
{p*}e<i. In the most-practical cases (genetic algorithms), the sequence of sampling
measures depends on the size of the population, u € N. So, the sampling measures in
the consecutive epochs are denoted by pz, t=1,2,3,....

The basic, single-deme stochastic search is convenient for theoretical investiga-
tions but is usually insufficient for solving difficult problems with many local minima
and large plateau regions. The main directions for improving this strategy are: (1)
to allow the population size to change throughout the computation; (2) to introduce
a structure of demes within the population; or (3) to accept many demes to be only
partially synchronized, allowing for variable search accuracy. Using these techniqu-
es typically leads to a loosely coupled computational scheme, locally governed and
synchronized by software agents.

2.4. Adaptive inverse solvers

Let us now describe several adaptive strategies, well-suited for solving inverse pro-
blems.

2.4.1. Adaptive accuracy population-based searches and the Island Model

We start by mentioning some well-known, population-based strategies that involve the
adaptivity paradigm. The type of adaptivity in the first two cases (the Dynamic Pa-
rameter Encoding [DPE] approach and the Delta Coding approach) is quite different
than in the last one (the Island Model [IM]). The pioneering papers concerning DPE,
Delta Coding, and IM are those of Schraudolph and Belew [65], Whitley, Mathias and
Fitzhorn [81], and Whitley et al. [80,82], respectively. For a synthetic description of
these methods, we point the reader to Sections 5.3.8 and 5.4.2 of Schaefer’s book [57].

Both DPE and Delta Coding algorithms use affine, binary encoding of the phe-
notypes located in the regular, compact set D € RV, N > 1. Typically, it is assumed
that, at the start of each algorithm, the phenotypes form a regular, coarse grid D C D.
Both algorithms perform conventional evolutionary computations, as described in the
previous Section 2.3. However, they monitor the evolution progress between the con-
secutive epochs, and when they encounter stagnation in the search process (e.g., when
the mean fitness does not decrease sufficiently), they take appropriate remedial ac-
tions; different ones for DPE and different ones for Delta Coding.

DPE chooses an arbitrary number of best-fitted individuals that will constitute
the seed of the forthcoming population. The accuracy of the search is improved by
increasing the length of the binary code of individuals. After the accuracy improve-
ment, the evolutionary search is continued until the next stagnation is observed or
the global stopping criterion occurs.

On the computational cost and complexity of stochastic inverse solvers 233

On the other hand, the Delta Coding algorithm passes to the Delta Phase, in
which the subdomain DA C D containing the best-fitted individuals is identified.
The new population search is started in the narrowed domain DA, which is encoded
using a finer spatial grid of phenotypes. The initial population is sampled uniformly.
The best-fitted individuals are stored in memory at the start of each Delta Phase.
Delta Phases are repeated until the global stopping criterion is met.

Both strategies follow a similar process to the standard branch-and-bound de-
terministic scheme (see; e.g., the book of Scholz [64]). They may speed up finding
the global minimizer with a desired accuracy (if it is unique), but they provide no
stochastic guarantees of doing so.

While the DPE and Delta Coding strategies improve the exploitation power of
stochastic, population-based search algorithms, the adaptation mechanism implemen-
ted in the island model improves their exploration ability. The main idea behind IM
is to perform several population-based stochastic searches (called “islands”) to solve
the same optimization problem in parallel. The sampling mechanisms might differ
among the islands, but the individuals are encoded in the same way for each of them.
The adaptation mechanism consists of temporarily exchanging the genetic material
(groups of individuals) between the islands. Unfortunately, in spite of the populari-
ty of IM systems in the initial decades of artificial evolution research, they brought
relatively little to solving difficult, global optimization problems such as the inverse
ones.

A significant contribution to the study of the island model was delivered by
Skolicki and De Jong [68,69]. Schaefer, Byrski and Smotka [60] introduced a rigorous
mathematical description of the island model dynamics, proving a theorem regarding
its asymptotic guarantee of finding all local minimizers.

2.4.2. Common adaptation of accuracy and deme structure — HGS

Hierarchic Genetic Strategy (HGS) links both trends in stochastic search adaptation
strategies, represented by the algorithms described in the previous section. Moreover,
its low computational cost makes it suitable for solving difficult inverse problems,
such as those formulated as (1).

To allow further study of the HGS computational cost and stopping condition, let
us briefly describe the basic ideas and structures standing behind it. Our description is
based on that from two of our recent papers [24,70] and from several papers referenced
therein.

The HGS algorithm improves upon the exploratory and exploitative abilities of
the standard evolutionary strategy by dynamically building a tree of demes. As we
head from the tree’s root to its leaves, each node is responsible for a more-accurate
and more-focused search process. Since these search processes are independent, the
algorithm can be implemented on parallel architectures in a very effective way.

The HGS algorithm operates as follows:

1. At the start, the root deme of the order one is created. It searches broadly with the
lowest accuracy, which allows for the wide exploration of the admissible domain.

234 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

2. In a single HGS step, all live demes perform metaepochs composed of K genetic
epochs (at most). An active deme may be stopped during a metaepoch if the
observed progress in evolution is insufficient.

3. After each metaepoch, all live demes of the order less then m (which is the
maximum depth of the tree) attempt to sprout child-demes. Each new child-deme
is concentrated near the best-fitted individual currently found by its parental
deme. Sprouting is performed conditionally; i.e., it is suspended if the sprouting
region has already been explored by sibling-demes.

4. The demes of the same order arriving to the same region are reduced at the end
of each metaepoch, in order to prevent search redundancy.

Genetic search space
low accuracy root population
numerical solution &
1
medium accuracy
numerical solution
S,
high accuracy
numerical
solution
o'}
leaf populations

Figure 2. HGS tree and corresponding coding meshes (central and right parts of the picture).
hp—FEM computational grids associated with different accuracy of direct problem solution
(left part of the picture).

The HGS algorithm can use two types of hierarchies of encoding mappings asso-
ciated with the deme hierarchy.

The first is the hierarchy involving the idea of binary affine encoding. At the
start, we define the regular, densest grid of phenotypes D C D C R¥, so that each
phenotype (21, ...,2,) has coordinates belonging to the finite sets z; € {&%, ..., S;Zn}
and p* = 2k" i =1,...,N. This grid is used for encoding leaf individuals, with the
largest binary code of length va pi*. Each higher level deme of order 1 < w < m is
associated with the grid of phenotypes obtained by dropping some points from the grid
used by demes of the (w4 1)-th order; but still, the number of available values of i-th
coordinate is the power of two, p¥¥ = ok kv < k;-”“ < k"i=1,...,N. The length
of the binary code at this level equals >;" p{’. If we denote by J,, the maximum

On the computational cost and complexity of stochastic inverse solvers 235

diameter of the phenotype grid at the w-th level of the HGS tree, then we obtain
01 > 99 >,...,> 0. The accuracy improvement of the genetic search associated with
the sprouting of a child-deme of order w < m is obtained by extending the binary
code representing each i-th coordinate by the (pi¥ — pi*~*)-length suffix. The detailed
description of the affine binary encoding and the hierarchy of binary encodings applied
in HGS can be found in Sections 3.1.1 and 5.4.3 of Schaefer’s book [57].

The second approach is a real-number encoding hierarchy. For simplicity, let us
assume that the admissible domain is of the form D =D = Hi\[:l [ai, b;] € RY, where
a; < b;. D is used as the genetic space (space of codes) for all leaf demes, allowing the
most-detailed and most-accurate search that is available with the current computer
arithmetic. The genetic spaces for higher-level demes, of order 1 < w < m, are
obtained by scaling, so D,, = Hf\il[O, bn;fl] C RY, where 400 >y =m0 > ... >
Nm = 1 are the proper scaling coefficients. The maximum search accuracy §,, achieved
in leaves is then reduced t0 0 = 7y O, for j =1,...,m — 1, in demes of lower order
w. The hierarchy of real-number codes was introduced by Wierzba [83]. Its broad
description is available in Section 5.4.3 of Schaefer’s book [57].

HGS was introduced by Kolodziej and Schaefer [62]. Their work also contains its
partial, formal analysis. They proved that binary HGS has an asymptotic guarantee of
success, and its computational cost can be estimated in comparison to SGA. The real-
number HGS and its efficiency were discussed by Wierzba et al. [83] and by Schaefer
and Barabasz [29]. The complete Markov model of HGS dynamics (excluding branch
reduction mechanism) was described by Schaefer et al. [59].

2.4.3. Coupling with the Adaptive Direct Solvers: hp—HGS

In order to solve the particular class of inverse problems considered in this paper,
HGS may be combined with the adaptive hp—FEM algorithm for solving the forward
problems A(u(w)) = 0, to evaluate the misfit function f(u,,u(w)). This strategy,
called hp—HGS, consists of estimating the fitness value of each individual with the
required accuracy depending on the level of the HGS tree. Forward problems at the
root level are solved with the lowest accuracy and at the leaf level with the highest
accuracy.

For some important cases (heat conduction, elasticity, AC and DC current in
material continua), the following inequality holds:

Errf, < ((ere1)i)*+C-0;+ Rest, i=1,... m, a > 1, (6)

where Errf, is the misfit evaluation error, (e,¢;); is the relative FEM error (see Sec-
tion 2.2), and §; stands for the inverse solution error at the i-th level of the HGS
tree. The constants C and « depend on the particular inverse problems to be solved.
Rest rapidly decreases when hp—FEM converges. So, in order to obtain the economic
profile of computation, we can set:

(eret); == Ratio; - (6:)% , i=1,... m, (7)

236 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

where Ratio; depends on the particular problem. Such a strategy allows for a si-
gnificant decrease in computational cost for ¢ < m due to the rapid decrease of
the hp—FEM computational cost when the restriction for the relative error (e;);
is relaxed (see (8) in Section 2.2). The left part of Figure 2 shows sample hp—FEM
computational grids associated with various accuracies of solving the forward problem
at consecutive levels of the hp—HGS tree.

The hp—HGS strategy was introduced by Schaefer, Paszynski, and Barabasz [50].
Crucial mathematical results verifying the evaluation (6), the setting of Ratio;, i =
1...,m (see formula (7)), together with the computational examples for heat conduc-
tion problems, Young modulus restoring, and the inversion of logging measurements
for DC and AC cases, was reported by Barabasz et al. [7], Barabasz et al. [6], Gajda-
Zagorska et al. [24], and Smolka et al. [70], respectively. These papers also contain a
detailed algorithmic description of hp—HGS.

The asymptotic guarantee of success, as well as some statistics concerning com-
putational cost comparison of SGA, HGS, and hp—HGS for solving inverse problems,
are provided by Barabasz and Schaefer [58].

3. Basic features and tools

In this section, we present the basic features and tools that may be useful when as-
sessing the computational complexity of solving inverse problems. We analyze both
results regarding the complexity of self-adaptive hp—FEM, running-time considera-
tions for global optimization heuristics, and classic complexity theory results for these
problems.

3.1. Computational cost versus relative error for hp—FEM

Let us consider a self-adaptive hp—FEM algorithm (see Section 2.2) applied to solving
an “elliptic-like” forward problem of the form (2). It has been proven that the appro-
priate selection of element sizes h and polynomial orders of shape functions p leads to
an exponential convergence of the numerical error with respect to the number of basis
functions (degrees of freedom) [2,3,66]. In this process of convergence, the parameters
h and p tend to 0 and 400, respectively, in an interdependent way. They both need to
satisfy the syntactic rules of element mesh refinement, taking approximations appro-
priate to the mesh topology. In the computational practice, p rarely exceeds 10, and
h is bounded from below by the arithmetic error of the particular implementation.
Exponential convergence of the self-adaptive hp—FEM 1is experimentally con-
firmed as the straight line y = —az + b in the system of coordinates where the
horizontal axis represents the cube root of the number of degrees of freedom,
z = N3 and the vertical axis represents the logarithm of the relative error

u —Uu
bLopp1”Bhop

y = logio(|leretll), lleretll < 1, where e. = —2— s the relative error,
T.p+1
expressed as the difference between two consecutive approximate solutions, and |||

is a proper norm in the space of the problem’s solutions. Constants a and b are

On the computational cost and complexity of stochastic inverse solvers 237

positive and problem dependent. This implies that logio(|leqci]]) = —a(N/3) 4 b,
which in turn entails N = —c;(logio(ca ||lere]]))? for ||eqei|| < 1, where the constants
c1 =a 3, ¢y = 107" > 0 are problem-specific. The computational cost of solving the
forward problem over a two-dimensional mesh depends on the structure of the hp-
refined mesh. For a regular mesh, the cost is of the order O (N 3/ 2). For meshes with
point-wise singularities, the cost can be reduced down to be linear, O (N). Finally,

cost = O (—c1(logio(ez lere])*") , llererll <1, (®)

where r € [1,3/2], and now ¢; = a=3",¢c3 = 1072 > 0.

The exponential convergence rate is illustrated in Figure 3 for a model L-shape
domain problem. In this figure, we also compare the hp-adaptive algorithm with
alternative algorithms and show that only hp-adaptivity provides an exponential co-
nvergence rate. In particular, we compare the algorithm with:

e h-uniform algorithm, which breaks all of the elements of the mesh into smaller
elements but does not increase the polynomial order of approximation,

e p-uniform algorithm with 3 elements, which increases the polynomial order of
approximation over the initial mesh with 3 elements,

e p-uniform algorithm with 12 elements, which increases the polynomial order of
approximation over the initial mesh with 12 elements,

e h-adaptive algorithm, which is the restriction of the automatic hp-adaptive algo-
rithm to the case where the polynomial orders of approximation remain constant.

10.29 | relative error Scales:
506 (number of degrees of freedom)”?’
) 4_ log(relative error)
1.22
0.6
03 — h-uniform,
0.15 - p-uniform, 3el
u --- p-uniform, 12el -
001 — - h-adaptation =
0.04 — - hp-adaptation
0.02] number of
0.01 Xy degrees of freedom
20 7 [190 [381 [669 [1075 [1619 [2321 3200

|<— Asymptotic convergence of hp adaptivity

Figure 3. Comparison of different mesh-refinement strategies: h-uniform strategy, p-uniform
strategy starting from 3 or 12 elements, automatic h-adaptation and automatic hp-adaptation
strategy.

238 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

3.2. First Hitting Time (FHT) in stochastic search

Analyzing the so-called First Hitting Time (FHT) of a stochastic search algorithm
is among the most-basic ways of evaluating its computational cost. The idea is as
follows: first, we define some set S C D of points in the search domain that are,
in some sense, “close enough” to the global solutions. Second, we define a random
variable — the first hitting time — that gives the number ¢ of the first genetic epoch
where the current population, P, contains at least one member of S. Finally, we
calculate the appropriate statistics of this random variable, such as the expected
value. These statistics give us some level of understanding of the algorithm’s efficiency.
For example, if we assume that the size of the population in each epoch is constant
and equal to p, quantity p - E(FHT) is the expected computational cost. If sampling
measures are constant (p* = p® V¢ > 0) and p°(S) > 0 is known, then E(FHT) can
easily be computed using the binomial distribution (see; e.g., the work of Pardalos
and Romeijn [43]). Analyzing the computational complexity of single- and multi-
deme stochastic search algorithms through the first hitting time is an intensively
studied area of research [8,21,33,34,54,73]. In particular, the just-cited papers (and
many similar ones) show rigorous results regarding the first hitting time of various
algorithms. Unfortunately, these papers typically make quite restrictive assumptions,
including those regarding the population size (single-individual populations or IMs
composed of single-individual demes), regarding the objective function (e.g., assuming
a globally convex objective), and others.

While considering the first hitting time provides a simple and precise notion of
convergence of a stochastic search algorithm, it is not immediate how to use this notion
to define a stopping condition for such algorithms. First, it is not easy to evaluate
the measure pt(S), for each given ¢ > 0, and usually only very rough lower bounds
are available. Second, if the sequence of sampling measures is not constant, then
computing the (expected) first hitting time requires precise knowledge regarding the
stochastic dynamics of these measures (which is rarely available). In effect, estimating
the expected first hitting time delivers only a very rough upper bound on the number
of computational steps necessary in a stochastic search.

Summing up, for the case of complex metaheuristics applied to difficult inverse
problems, using the first hitting time statistics to implement stopping conditions
appears to be difficult. Algorithms using such stopping conditions would likely deliver
unacceptable computational costs.

3.3. Convergence of genetic search along a heuristic

The concept of population-based stochastic search heuristics was introduced by Mi-
chael Vose [79] and applied to the Simple Genetic Algorithm (SGA). Some attempt at
slightly generalizing the heuristic for other population-based searches can be found,
for example, in the works of Schaefer [56,57] and Schaefer and Jabtonski [61]. The
existence of heuristics is conditioned through some simple principles:

1. The admissible set is finite, card(D) = r < +oc.

On the computational cost and complexity of stochastic inverse solvers 239

2. Each population of an arbitrary finite size u < +oo (being the multisets of D
elements) in unambiguously represented by an element of a compact, bounded
set £ C R".

3. There exists a bijection 6 : £ — M(D); i.e., each population representative might
be treated as the stochastic sampling measure over the admissible set.

4. The operations that lead to sampling (e.g., mutation, crossover) have to have the
same stochastic characteristic at each epoch t of the search (e.g., by sampling
each population P, t =1,2,...).

Assumption 2 is satisfied; e.g., if £ is the unit r — 1 dimensional simplex in R" con-
taining frequency vectors of all populations. If the particular, finite population size u
has been established, then representations of such populations form a subset X,, C £
such that:

n:#XH:<r:M_1)<+oo 9)

(see the work of Vose for details [79]).

Assumption 4 provides the possibility of modeling the search dynamics as a sta-
tionary Markov chain, with state space X, contained in £ and the probability trans-
ition rule 7 : £ — M(E). The symbol 7 is polymorphic and can be understood as
the coherent family of transition rules for various population sizes u < 400, so that
71X, X, — M(X,).

The realization of such a stochastic process is the sequence of u-sized populations

Py, Py, Py, ... or their unambiguous representations z,,z},z%,--- € X, C £ We
denote the starting probability distribution by 772 € M(X,), and we denote the

probability distributions in the consecutive epochs by wﬁ EM(X,),t=1,2,3,....
For each particular u < 400, function 7|X,, is fully characterized by the n x n
transition probability matrix @ such that Q,, = 7(z)({y}), Vz,y € X,,. Finally, from
the Kolmogorov equation we have 7, = Q' 7, t = 1,2,.. ..
Definition 1. Let us consider a particular class of population-based stochastic search
algorithms satisfying Assumptions 1—4 with the common space of states £ and Markov
transition rule 7. The continuous mapping H : € — & is called their heuristic if it
satisfies:

1.Vx € & H(z) = E(r(x)),
2.Vz € £ O(H(z)) € M(D) is the sampling measure for the epoch following the
epoch in which the population represented by x € £ appeared.

Let us now denote by xz the unique representation of population P; of cardinality
1 in the t-th evolution epoch.
Remark 2. From condition 1 of the above definition, it follows that, for an arbitrary
u € N, expectation E(T(xz)) € & represents the expected population in the next epoch,
t+1, provided that in the t-th epoch population represented by xz appeared. Moreover,
Condition 2 from the definition says, that pi,t' = 0(H(x!)). In other words, the
following diagram (see Figure 4) commutes.

240 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

&> H(xi) u-times sampling according

to the probability distribution
H pi'= O (H(xi) € M(D)

im lementatlon
x PO xe 1=0,1,2, ..

T one-time sampling according
to the probability distribution

ME)>t(xl) TEDEME)
Figure 4. The stochastic schema of a population search with heuristics.

If the Simple Genetic Search with population size p has heuristic H, then the
probability transition matrix @ can be computed using the following formula [79]:

T ((H(@))"
Quy = u!j];[o (/iyj))' Va,y € X, (10)

Definition 3. Heuristic H is focusing if:
K CE KA£D Vel TzeK; HP(z) — 2, p— +oo,

where IC is the non-empty set of fixed points of H which attract all points from E.
Remark 4. If the space of states € is bounded and convez in some metric-topological
space, then from Schauder’s theorem [63], it follows that K is nonempty (H has fized
points).

The following result was shown for the Simple Genetic Algorithm for which the
space of states £ is equal to the unit simplex (which is the closure of the set of
frequency vectors of all populations of a finite cardinality U X,.; see the work of
Vose [79]).

Theorem 5 (Vose [79], Theorem 13.2). VK > 0,Ve > 0,Yv <1 3IN > 0 independent
ofajg €€ sothatVO<t< K:

neN

Pr{u>N= Hx — H'(x H <e}>v (11)

where xg € & stands for the frequency vector of the initial population Py.

The above theorem shows that, if the population is sufficiently large, then the
deterministic trajectory of heuristic iterations {Ht(xg)}, t=1,2,3,...,is followed
arbitrarily closely by the trajectory of the SGA population, in the sense of inequality
(11). Moreover, we may conclude that the trajectory of heuristic iterations represents
the maximum search ability performed by the infinite 4 — +o00 population among
all SGA searches represented by the same heuristic H. Further, if the heuristic ‘H
is focusing (see Definition 3), then we may infer that its fixed points represent the
limit search possibility of the aforementioned class of search algorithms. That is, the
populations contained in K represent the maximum information about the solution
among all populations represented in €.

On the computational cost and complexity of stochastic inverse solvers 241

3.3.1. Approximating fixed points of a heuristic

We now consider the behavior of the class of Simple Genetic Algorithms governed by
the same heuristic H. Each SGA from this class has the same genetic space and the
same selection and genetic operators (i.e., the parameters and the operator types are
strictly the same), and they may differ only in the population cardinality .
Theorem 6 (Theorem 4.54 in the book of Schaefer [57], see also the works of Te-
lega [75] and Telega, Schaefer and Cabib [76]). Let us assume that genetic operator
H : & — & is focusing and that its set of fixed points is finite (#K < +00). Let us
define:
Ke={x€&; Jyek; dlz,y) <e}

to be the open e-envelope of K in the (r — 1)-dimensional hyperplane that contains &,
where d(-,-) stands for the Euclidean distance in R" 1. If we assume that mutation is
strictly positive (py, > 0), then:

Ve >0, Vn >0, 3N e N, IW(N) € N;

Vu > N, Vk>W(N) mr(Ko) > 11,
where Wﬁ € M(E) is the measure associated with an arbitrary instance of the Simple
Genetic Algorithms spanned by H, with population size .

In other words, if H is focusing, then sufficiently large Simple Genetic Algorithm
populations will concentrate close to the set K with an arbitrarily large probability
1 — 7 after sufficiently many genetic epochs.

The selection of the initial probability distribution 7{, € M(E) does not affect
the above result because the Markov chain of states in X,, C £ and the transition
probability rule 7 associated with the Simple Genetic Algorithm is ergodic (provided
that p,, > 0).

3.3.2. Well-tuning and convergence of sampling measures

We assume again that the set of phenotypes is embedded in a regular, compact set
D c R¥. For each probabilistic measure p € M(D), it is possible to define a measure

with density p € LP(D) such that 7 is constant on the Voronoi neighborhood ¥ C D

p(&)
meas(J¢)

associated with each £ € D, and its value equals
Schaefer’s book [57]).

The main advantage of such a definition is that, if sampling has a strict positive
probability p(§) > 0,V¢ € D, then each set A C D with a positive Lebesgue’s measure
meas(A) > 0 also has a strictly positive sampling measure [, dp > 0. Moreover, it is
easy to observe that p is the density of some probabilistic measure from M (D).

there (see Chapter 3 in

Let us denote by 6(x) € L?(D) the density associated with the sampling measure
0(xz) € M(D) for some population’s representative x € £. The convergence result
similar to Theorem 7 holds:

242 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

Theorem 7 (Theorem 4.66 in Schaefer’s book [57]). Let us assume that the SGA
heuristic operator is focusing, that its set of fized points is finite (#K < +00), and that
the mutation probability is strictly positive. Then, Ve > 0, Vn >0, 3N € N, IW(N) €
N, 3z € K it holds that:

Vi > N, Vk > W(N) Pr {Hﬁ(xﬁ) - e(z)HLp(D) < ca} >1-1, (12)
where)
meas(D)?»
= 1 .
mingep fmeas(@e)}’ P € 1+

Let us denote by W C D the finite set of local minimizers of the misfit function,
and by {Be+}, T € W, the family of their basins of attraction. Roughly speaking,
the basin of attraction B+ C D of the local, isolated minimizer £T is a connected
part of the maximum level set such that it contains £ and a local strictly descent
method starting from each point in Bg+ converges to £ (see the work of Boender et
al. [9] or Schaefer’s book [57] for details).

Definition 8 (Definition 4.63 in Schaefer’s book [57])). We say that the class of
stochastic population-based search algorithms spanned by heuristic H is well-tuned to
the set of local minimizers VW C D if:

1. 'H is focusing and the set of its fized points K is finite,

2.¥¢T e W, 3C(€1) closed set in D so that £ € C(£1) C Be+, meas(C(£1)) > 0
and

0(z) > threshold almost everywhere on C(£1),

0(2) < threshold almost everywhere on D \ g+)y C(€7),

where z € IC is an arbitrary fixed point for H and threshold is some positive
constant, which we treat as the definition’s parameter.

The main idea of well-tuning can be expressed as follows: the class of search
algorithms spanned by the heuristic H is well-tuned to the set W of local misfit
minimizers under interest, if L?(D)-regular measure densities 6(z), associated with
all fixed points z € IC of H dominate almost everywhere on the central parts of their

basins of attraction C(z7) C By+, 2T € W.

3.4. Complexity theory of local and global search

In this section, we consider the problem of finding local and global optima from the
point of view of a classic complexity theory. In particular, we present two results
bounding the complexity of these two problems; that is, we show that the problem
of finding a local optimum of a function is NP-complete, whereas the problem of
finding a global optimum is DP-complete. Both results follow through a relatively
straightforward translation of our problems to the world of complexity theory, but are
nonetheless interesting. Indeed, the complexity class DP is significantly larger than

On the computational cost and complexity of stochastic inverse solvers 243

the class NP (provided that NP # coNP, which is a standard complexity-theoretic
assumption — see; e.g., the textbook of Papadimitriou [40]), and so the fact that
finding local optima is NP-complete and finding global optima is DP-complete shows
that the latter is a significantly more computationally intensive problem. While this
is an obvious fact from the point of view of every practitioner, it is reassuring that
this also shows in the complexity-theoretic view of the problems.

3.4.1. Basic notions from complexity theory

In this section, we very quickly review the most-essential notions from complexity
theory relevant to our study. We point those readers interested in a more detailed
exposition to the classic textbook of Papadimitriou [40].

Most of the time, complexity theory is concerned with decision problems; i.e.,
with problems which ask yes/no questions. Consider the following classic problem:
Definition 9. In the SAT-3CNF problem, we are given a Boolean formula F over
variables x1,...,Tp,, in conjunctive normal form', with at most three variables per
clause. We ask if there is a truth-assignment for the variables so that F' evaluates to
truth.

For example, the following formula is in conjunctive normal form, contains at
most three variables per clause, and is satisfiable:

(371 \/.132)/\(3371\/3372\/@‘3)/\(1‘2 \/E) (13)

To see that the formula is satisfiable, note that it suffices to assign the value true
to each variable. From now on, depending on the context, we will either speak of
Boolean variables as having values true/false or as having values 0/1 (the latter will
be convenient when we mix logical and algebraic expressions).

Decision problems are modeled as sets of those inputs for which the answer is yes.
That is, we can think of SAT-3CNF as of a set of those formulas in conjunctive normal
form with (at most) three variables per clause that are satisfiable. (The standard way
of modeling decision problems is through formal languages; but for our purposes,
there is no need to give such a low-level discussion.)

The two most important classes of decision problems are P and NP. A decision
problem A belongs to class P if there is an algorithm that solves it in polynomial time.
A decision problem B belongs to class NP if there is a polynomial-time algorithm that,
given an instance of B and a certificate-of-correctness for this problem, decides if this
certificate is indeed correct. The exact nature of the certificate depends on the problem
at hand; the only requirement is that its length has to be polynomially bounded in
the length of the input instance. For example, for SAT-3CNF, the certificates could
simply be the valuations of all of the variables: Given a Boolean formula and the
values of all of the variables, it is trivial to verify if the formula evaluates to the truth

LA formula is in conjunctive normal form if it is a conjunction of clauses, where each clause is a
disjunction of variables or their negations.

244 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

or not. If it does, the certificate is correct. Thus, SAT-3CNF is in NP (but it is not
known to be in P).

There is a natural partial order of hardness among decision problems, defined
through the notion of a polynomial-time reduction.
Definition 10. We say that decision problem A (polynomial-time many-one) re-
duces to decision problem B (denoted as A <P, B) if there exists a polynomial-
time computable function x such that, for each possible input x for A, it holds that
x €A < f(x)€B.

In other words, a reduction converts its input from the format of one problem to
the format of the other while maintaining the answer. Clearly, the problem to which
we reduce has to be at least as hard as the problem from which we reduce.

A decision problem B is NP-complete if it belongs to NP and if every problem A
from NP reduces to it. In other words, NP-complete problems are exactly the hardest
problems in NP. It is well-known that SAT-3CNF is NP-complete [15].

In our discussion, we will occasionally refer to more advanced notions and results
from complexity theory. In such cases (e.g., when discussing the class DP), we will
provide necessary definitions as needed.

3.4.2. The problems of finding local and global optima

The main idea behind the results of this section is that we can encode various hard
computational problems as a search for local and global optima. While doing so is quite
easy, it requires some care at the formal level. We start by providing definitions of the
problems of finding local /global optima. (We mention this for the ease of presentation,
we consider one-dimensional problems only; it should be straightforward to see that
all of our results directly translate to the multidimensional cases.)

Definition 11. In the LOCALOPTIMUM problem, we are given function f: (0,1) —
R, and our goal is to compute a local maximum xq; that is, a value such that there is
e > 0 such that for each x € (xg — €,x0 + €) it holds that f(xg) > f(x).

Definition 12. In the GLOBALOPTIMUM problem, we are given function f: (0,1) —
R, and our goal is to compute a global maximum xq; that is, a value such that for
each x € (0,1) it holds that f(xg) > f(x).

While intuitively clear, the two problems above are not well-defined. In particular,
we need to decide how the input functions are encoded and how accurate we want
our computations to be. Regarding accuracy, we assume that we are given accuracy
parameter ¢ and are looking for a solution in the set {% | 1 <i<2t—1}. In other
words, for simplicity, we are working in a t-bit fixed-point binary system. Regarding
the issue of representing functions, we use the standard model of Boolean circuits (see;
e.g., the text of Papadimitriou [40] regarding basic models of computation). Briefly
put, a Boolean circuit that represents function f consists of ¢ 0/1 inputs (modeling the
t bits of f’s input argument), ¢ > ¢ 0/1 outputs (modeling the ¢’ bits of f’s output;
we assume that f’s values can be greater than 1, but we implicitly assume that f is
bounded), and a number of logical gates connecting inputs, outputs, and each other

On the computational cost and complexity of stochastic inverse solvers 245

(these logical gates include AND gates, OR gates, and NOT gates). It is well-known
that every function f: {0,1} — {0,1}* that is computable in polynomial time with
respect to O(t + t') can be represented as a Boolean circuit of size polynomial in
O(t + t’). This means that we can simply view input f of LOCALOPTIMUM and of
GLOBALOPTIMUM as an arbitrary polynomial-time computable function.

To be formally correct and in sync with the discussion above, we should rephrase
our definitions of LOCALOPTIMUM and GLOBALOPTIMUM to speak of functions en-
coded using Boolean circuits, and to explicitly take into account that these functions’
inputs are ¢-bit integers, and their outputs are #’-bit integers. However, we choose to
omit such technicalities in the hope that this will help keep our discussion clearer. We
stress, however, that if one wished to go through such an exercise of being formally
correct, all of our results would stay intact.

Nonetheless, we need to make one more adjustment to our problems. As we have
said, classic complexity theory is geared towards working with decision problems,
whereas LOCALOPTIMUM and GLOBALOPTIMUM are so-called search problems (i.e.,
problems that seek a value with some specified properties). We reformulate them as
decision problems in a straightforward way.

Definition 13. In the DECISIONLOCALOPTIMUM problem, we are given a function
f:(0,1) = R (encoded as a Boolean circuit, with input precision t and output preci-
sion t', both given as part of the input in the unary encoding), and a value yo. We
ask if there is a point xo € {3 | 1 < i < 2" — 1} such that f(zo) > f(wo — 57),
f(@o) = f(zo + 5), and f(x0) > yo.

Definition 14. In the DECISIONGLOBALOPTIMUM problem, we are given a function
f:(0,1) = R (encoded as a Boolean circuit, with input precision t and output preci-
sion t', both given as part of the input in the unary encoding), and a value yo. We
ask if there is a point xg € {37 | 1 <i < 2" — 1} such that f(zg) > yo, and for every
other point © in this set, it holds that f(z) < yo.

We mention that these are not the only natural ways of translating the intuitive
variants of our problems into decision variants. For example, instead of asking about
the existence of an optimum with at least a given value, we could be asking if there
is an optimum of a given type in a particular open interval.

3.4.3. Finding a local optimum is NP-complete

We now show that the problem of finding a local optimum is NP-complete. To this
end, we will give a reduction from SAT-3CNF. We will use the following notation:
given an integer t, 0 < t < 2" — 1, we write (t1to...¢,) to mean its n-bit binary
representation (so each t;, 1 <i < n, is either 0 or 1, and we have ¢t = Y 1" | ¢;2/71).
Given a nonnegative integer ¢ and a Boolean formula F' over variables z1, ..., z,, we
write F'(t) to mean the logical value of F' evaluated for z; = t1,...,2, = t,, where
(t1 ...t,) is the n-bit binary representation of ¢.

Theorem 15. DECISIONLOCALOPTIMUM 4s NP-complete.

246 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

Proof. 1t is easy to see that the problem is in NP. Let f be our input function and
t be the precision of the encoding used (we assume that ¢ is represented in unary).
It suffices to note that a nondeterministic algorithm can guess the point z(that is
supposedly a local optimum (by convention, zq is of the form 2%, 1<i<2t—1)and
check that indeed we have f(z¢) > f(zo — 37), f(z0) > f(z0 + 57), and f(z0) = yo.

We now give a reduction from SAT-3CNF to LOCALOPTIMUM. Let F' be our
input formula over variables xi,...2,. For each i, 0 < i < 2"!, we define the
following two functions:

1 . il
n _ §I, lfl’e [ﬁ??)?
9 (z) { , otherwise (14)
(2n+1—¢)m—2z’+§—i+_22+'ﬂ, if @ € [k, 5 + zer),
hi(e)=q (=20 4+ 2i+ 22+ =253 1 2142, if x €[5 + 5y, B,
0, otherwise
(15)
While a bit contrived, these two functions are very simple. First, let us note that, for
each i, 0 < i < 2" —1, both g; and h; are nonzero only on the interval [55, 5£) (with

the exception of ¢ = 0, where the interval is open on both ends). Second, h; is, in
essence, just a sequence of parts of a linear function, and indeed, we have that

2" —1
g(z) =Y ')
=0

is simply %z over the interval [0, 1). Third, for each 7, 0 < ¢ < 2" — 1, we have that A}
over interval |57) for the first half of the interval is a straight line that increases from

L. 2% to 1 (which it reaches exactly at point z = 55 + Qn%L and then it becomes a

2 s
straight line that moves toward value % . l;—nl
Given the families of functions g} and A}, 0 < ¢ < 2" — 1, we define our target

function as follows:

?
on

2" —1

f@) =Y (F@hi(@) + (1= F(i)g;' (x)).

=0

Intuitively put, f(x) is a linear function %x that occasionally, on intervals [2%,, Z;ﬂl)
such that the n-bit binary representation of i corresponds to a satisfying truth assi-
gnment for F', spikes up to value 1 and then goes down to become the linear function
again. It is easy to verify that f(x) is a continuous function, and if one insisted, one
could even define f to be infinitely differentiable (but then its definition would be
much more involved).

Finally, it is easy to see that f(z) is computable in time polynomial with respect
each chosen precision ¢t and the value n. Thus, it can be represented as a Boolean
circuit.

On the computational cost and complexity of stochastic inverse solvers 247

Our reduction outputs the circuit-encoded function f, input precision t =n + 1,
output precision t' = t, and value yg = 1. By the very definition of f and the fact
that our input precision is t = n + 1, it is easy to see that our function f has a local
optimum with value at least 1 if and only if F' is satisfiable. O

The above result should not come as a surprise. It is well-known that various
optimization problems indeed are NP-complete. Its value stems from two facts: first,
it is expressed in the language of searching for local optima of continuous functions.
Second, we will use it as a baseline for the comparison regarding the complexity of
global search problems.

3.4.4. Finding a Global Optimum Is DP-Complete

Let us now move on to the case of the DECISIONGLOBALOPTIMUM problem. Intuiti-
vely, finding a global optimum is much harder than finding a local one, because given
a function f, it requires one to find a point 29 € (0,1) such that, for all € (0,1),
we have f(zg) > f(z); on the other hand, when looking for a local optimum, it
suffices to find a point whose value was greater than that of its two neighbors. In
this section, we give a formal argument that this intuition is correct by showing that
DECISIONGLOBALOPTIMUM is DP-complete.

The complexity class DP is not very well known outside the structural complexity
theory literature, and so we will now recall its definition and provide a very brief
discussion of its properties.

Definition 16 (Papadimitriou and Yannakakis [42]). We say that a decision problem
L belongs to the class DP if there are two decision problems A, B € NP such that
L=A-B.

In other words, a problem L belongs to the class DP if there are two problems,
A and B, from the class NP such that L accepts all of the instances accepted by A,
except those accepted by B. In effect, it is easy to see that NP C DP. If A belongs to
NP, then by taking B = () (which, of course, belongs to NP), we have that A € DP.
On the other hand, we also have that coNP C DP (coNP is the set of all decision
problems from NP with the answer reversed; it is widely believed that NP # coNP.)
In effect, unless NP = coNP (which is not believed to be true), we have that DP
is a strictly larger class than NP. This also means that DP-complete problems are
strictly harder than NP-complete ones. Yet, DP-complete problems are not much
harder than NP-complete ones. This follows from the fact that DP is a subclass of
the second level of the polynomial hierarchy:

NP € DP Cc PNP C PH.

(We point the readers not familiar with the polynomial hierarchy either to the original
research paper of Stockmeyer [71], or to the textbook of Papadimitriou [40], or to the
textbook of Hemaspaandra and Ogihara [26] for a general overview of a number of
complexity classes, their properties, and their complete problems.)

248 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

The class DP has many natural complete problems, many of which indeed model
some form of a search for a global optimum. In particular, we will use the following
one:

Definition 17. In the MAXCLIQUE problem, we are given a graph G = (V, E), an
integer k, and we ask if the largest clique in G (that is, the largest complete subgraph
of G) consists of exactly k vertices.

Using the fact that MAXCLIQUE is DP complete, we will show that GLOBALOP-
TIMUM is DP-complete as well.
Theorem 18. DECISIONGLOBALOPTIMUM is DP-complete.

Proof. We write (f,yo) to denote an input for the DECISIONGLOBALOPTIMUM, where
f is a function (encoded as a Boolean circuit, with ¢ and ¢’ being the input/output
accuracies, encoded in unary, and available implicitly as part of f’s description), and
where yq is a value.
We first show membership of DECISIONGLOBALOPTIMUM in DP. To this end,
we define the following two problems:
1. In the MATCHOPTIMUM we are given input (f,yo) and we ask if there is z¢ such
that f(zo) > yo.
2. In the EXCEEDOPTIMUM we are given input (f, yo) and we ask if there is a point
x such that f(z) > yo.

It is straightforward to see that the following holds:

(f,yo) €EDECISIONGLOBALOPTIMUM <=
(f,y0) € MATCHOPTIMUM A (f, yo) ¢ EXCEEDOPTIMUM

This means that:
DECISIONGLOBALOPTIMUM = MATCHOPTIMUM — EXCEEDOPTIMUM.

Since it is easy to see that both MATCHOPTIMUM and EXCEEDOPTIMUM are in NP,
we have that DECISIONGLOBALOPTIMUM is in DP.

To show that the problem is DP-hard, we will give a reduction from the MaxC-
LIQUE problem. Consider an input instance of MAXCLIQUE with graph G = (V, E)
and number k. We ask if G’s largest clique has exactly k vertices. For ease of notation,
we rename G’s vertices so that V = {1,...,n}.

Recall from Section 3.4.3 that we write (i1,...,%,) to mean the binary represen-
tation of a number i, 0 < ¢ < 2" — 1. We define a function F(i), 0 < i < 2" — 1, as
follows:

Z?Zl ij, if for each j, j’ such that i; = 1 and i;; = 1 there
F(i) = is an edge connecting vertices j and j’ in G,
0, otherwise.

On the computational cost and complexity of stochastic inverse solvers 249

In other words, if the binary encoding of i corresponds to a clique in G, then F(7) is
the size of this clique, and otherwise it is 0. We will also need the following family of
functions (for each function h?', we have that ¢ is an integer, 0 < i < 2™ — 1):
2 (g — 5, i € [, on + 5r)s
hi(x)=9q 275 —2), ifx €[5 + 5 T,
0, otherwise

Note that, for each i, 0 < i < 2”71, we have that h?'(z) is simply a function that is 0
on the whole interval (0, 1) except that on the subinterval (57, 1;—”1) it linearly spikes
up to 1 (which it reaches at 55 + ﬁ), and then linearly moves down to 0.

We define our DECISIONGLOBALOPTIMUM function f as follows:

2" —1

fl@)=az+ Z F(i)h!(3).

The basic idea behind function f is that it behaves like a linear function (the x
component), except that, if for a given i the encoding (i1, ..., i,) of ¢ describes a clique
of size k, then the function moves up to z + k£ and then moves back down to z. It is
thus clear that a global optimum of f corresponds to the largest clique of G. To put it
formally, our reduction outputs (f,yo), where f is the just-defined function, yo = &,
and the input precision is ¢ = n + 1. (Note that the setting of the input precision
is extremely important for the correctness of the proof.) The output precision is
irrelevant as long as we can output integers with values between 0 and n + 1.

To see that the reduction is correct, it suffices to see that if an integer i describes
a clique of size k in G, then k < f(% + ﬁ) <k+1.

It is also quite clear that one can derive a Boolean circuit describing function f
in polynomial time. This concludes the proof. O

This result requires some discussion. First, the reader may question the usefulness
of the DECISIONGLOBALOPTIMUM problem compared to its search variant, GLOBA-
LOPTIMUM, because the former requires us to specify the value of the global optimum
and simply verifies if, indeed, there is a global optimum with a given value, whereas
the latter provides the point which is the global optimum. However, our main goal in
this discussion is to formally justify that the problem of finding a global optimum is
much harder than the problem of finding a local one. Our result shows that, even in
a much-simplified setting where we do have a good guess of the value of the global
optimum, the problem of verifying our guess has higher computational complexity
(DP-completeness) than the problem of finding a local optimum (NP-completeness).

4. Research directions and first results

In this section, we present some preliminary ideas for establishing the computational
cost of global search algorithms. In particular, we focus on the first hitting time for

250 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

well-tuned genetic search algorithms, we consider the first hitting time for hierarchic
search strategies, and we show that, from the point of view of complexity theory,
finding all global optima is significantly more difficult than finding a single one.

4.1. Evaluation of FHT for well-tuned genetic searches
4.1.1. Single-step evaluations

Let us assume that S C D is a set of points that might be called “solutions” to the
global phase of the inverse problem. S might be a set of phenotypes located in the
basins of attraction of the misfit minimizers.

Let p° € M(D) be the sampling measure used for creating the initial popula-
tion Py. Applying the Bernoulli sampling rule for y—times sampling with return with
probability of success p°(S), we obtain:

Observation 1. The probability of sampling at least one individual from S to the
initial population equals po = 1 — (1 — p°(S))*, while the probability of sampling the
initial population without solution individuals is pl = (1 — p°(S))*.

Analogously, if the particular population vector x € X, appeared in a ¢-th epoch,

then:
Observation 2. The probability of sampling at least one individual from S to the
population in the (t+1)-th epoch equals p, = 1—(1—0(H(x))(S))* while the probability
of sampling this population without any individuals from S is pl, = (1—0(H(x))(S))*,
where x is the population vector for the t-th epoch.

Next, using Bayes’ rule, we get:

Observation 3. Assuming the initial probability distribution is 71'2, the probability of
sampling at least one individual from S in the (t + 1)-th epoch is:

Z (Qt)my (Wz)ypm (16)

z,y€X,

whereas the probability that the (t 4+ 1)-th epoch does not contain any individual from
S is:
1- Z (Q)ay (Wg)ypw = Z (Q)ay (Wg)yp;- (17)

r,yeX, z,yeX,
Note that all components of formulas (16) and (17) can be computed using heu-
ristic H.
4.1.2. Asymptotic property

We consider the set of all populations from X, that contains solutions:

Xf = {z € X, : « contains individuals from S} . (18)

Let Aj be the event that Uf:o P, QXE # (), where Py, Py, ..., P is the sequence
of p—sized populations generated by the stochastic search algorithm with heuristic H.
We assume that the heuristic has a single fixed point & € £.

On the computational cost and complexity of stochastic inverse solvers 251

Assuming some small £ > 0, we can evaluate Pr(A;) using Bayes’ formula:

Pr(A;) = Pr(Ar,, € K.(#)) - Pr(a!, € K.(2)))
+Pr(Alel, € £\ K.(2)) - Pr(at, € £\ K.(#)).

Respecting the assumptions of Theorem 6, according to the genetic search pro-
cess, we have:

Pr(xi € K.(2)) >1—n, Pr(xz €E\NK(2)<1—m, (20)

where 1 > 0 is arbitrary small and p and ¢ are sufficiently large.

The following additional assumptions are reasonable for the Simple Genetic Pro-
cesses well-tuned to the set of local minimizers K C S (see Definition 8):

1. &1 <22 = Pr(Ajat, € K., (#)) > Pr(A]zl, € K., (2)),

2. 3e9 > 0; Ve < eo, Vt >0 Pr(Asz], € K.(2)) = 1, or, in other words K.(Z)) C
X 5 C X,,, where X /f is the set of population vectors such that each population
represented by its element contains and individual from S.

We make the following observation:

Observation 4. Let us consider the class of Simple Genetic Processes spanned with
focusing heuristic H, well-tuned to the set of local minimizers KK C S. If Assumption 2
(see a few lines above) holds, then for a sufficiently small € > 0 we have:

Pr(Ay) > Pr(z), € K.(&)). (21)

Moreover, if 1 and t are sufficiently large, then Pr(A;) is arbitrary close to Pr(wi €
K.(%)), while Pr(A¢|z}, € £\ K.(&)) - Pr(z}, € £\ K.(Z)) vanishes.

4.1.3. First hitting time

The probability of hitting S in exactly time step ¢ equals:

Pr(mt 6X§| xogXS,...,xt,l ¢X5) =

(22)
Eytexf Zyo ye 1€X53 Quoys -+ Qui—zye—r Quyi_rye (Wﬂ)yo-
The first hitting time of S is the random variable:
HY=inf{t>0:2,€ X }. (23)

From (22) it follows that:

Pr (HS = t) = Z Z Qy()yl Qyt—zyt—1 Qyt—lyt (”T,LOL)YJO' (24)

Y E€XE Yo, yr—1€X7

252 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

The statistics of H° can be computed by means of (24). In particular, its mean value
is given by the following formula:

400 if Pr (:ct ¢ Xf for all t) >0,

Z tPr (HS = t) otherwise. (25)

For ergodic chains the first case of (25) cannot hold. In such a case, from (22), we
have:

Z Z Z Qyoyl e Qyt—ﬂh—l Qyt—lyt (Wg)yo' (26)

t=0 y€X3J yo,.yi—1€X5

In particular, when the initial distribution is concentrated in a single individual z,
the above expected value equals:

10 HS Z Z Z Qrow e Qyt—'zyt—l Qyt_lyt- (27)

t=0 g €XS y1,ye—1EX5E
It can be easily proven (cf. [38]) that E,,(H®) is the unique nonnegative solution to
the following linear system:

{Ew(HS):O for z € X7 (28)

Eo(HS) =14 Y cx, QuyBy(HS) forz ¢ X5,

Note that, since X, is finite, E(H®) can be computed using (28) for any initial
distribution 7T2.
4.2. Generalization of FHT evaluation for hierarchic strategies

The formulation of the HGS dynamics Markov model [59] gives us the opportunity to
compute the first hitting time for this complex strategy as well. Since the description
of the model is rather complicated, we recall here only some of its elements in a form
that is simplified but suitable for derivation of the first hitting time for this strategy.
See the work of Schaefer et al. [59] for the general formulation and all necessary
details.

4.2.1. HGS Tree

The deme structure of the HGS strategy is mapped into graph HGSTREE = (V, E, F)
(see Section 4.1 in the work Schaefer et al. [59]), where: (1) V is the set of nodes repre-
senting all possible demes allowed by the applied encoding and additional restrictions
introduced in the HGS instance under consideration. (2) The set of edges E imposes
a tree structure of depth m. (3) The set of labels F' contains integer vectors of length
m that form the complete collection of paths to each node from the root.

On the computational cost and complexity of stochastic inverse solvers 253

The number of children of the HGSTRFEE nodes may vary through levels, but
on each level, ¢ is bounded by k;,i = 1,...,m — 1. The root deme may have, at most,
ki1 child-demes, and each deme at each i-th level has, at most, k; child-demes. The
maximum, total number of demes at the i-th level equals: 1 for ¢ = 1 and g; = Hz;ll ks
for 1 <i<m.

We assume later that we will use a discrete encoding, the same for all demes at
each particular level of the HGSTREE. Moreover, all demes at the particular i-th level
have the same size u;. Of course, the encoding and p; may vary among HGSTREE
levels.

4.2.2. The space of states

Roughly speaking, the state of the Markov chain modeling HGS is a tree of states of
all potentially existing demes associated to the nodes of the HGSTREE (see Section
4.2 in the work Schaefer et al. [59]).

Let us recall of the notation of deme representation introduced in Section 3.3.
Respecting the imposed assumptions, we denote by XZL the set of state vectors of
all demes at the i-th level of the HGSTRFEE. Consequently, the evolution progress of
such a deme is characterized by vector = € X;h

Moreover, each deme (except for the root) may take the following status:
inactive, new, active, stopped. The root deme may take only two of them, active or
stopped. It becomes active just after the start of HGS and is switched to stopped after
the global stopping condition is satisfied. The status of each branch or leaf deme is:

e inactive from the start of HGS until it is sprouted by the parental deme;

e new, immediately after it has been sprouted; moreover, the sprouting operation
sets the initial value of the deme’s state vector (creates an initial multiset of indi-
viduals); just after, during the forthcoming metaepoch, the state new is switched
to active, or to stopped if the efficiency stopping condition is satisfied;

e active, if it was previously new or active and did not meet the efficiency stopping
condition;

e stopped, if the efficiency stopping condition was satisfied in the current meta-
epoch, or has been satisfied earlier; moreover, the branch demes are switched to
the state stopped if the number of its active or stopped child demes reached the
prescribed maximum; the state of a deme once stopped cannot be changed.

For the sake of completeness of the stochastic model, the deme state vectors of
all branches and leaves (except the root node) are filled by an arbitrary values at the
start of HGS. These starting values do not affect the computation results and are
removed just after the particular deme becomes new.

The state space of the HGS Markov model is a subset of the space:

X = {active, stopped} x X}, x

. e , . 2
g (Hg’zl ({mactwe, new, active, stopped } x XL)) . (29)

254 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

Let us introduce:

deme, : X — X, (30)
to denote the projection that maps an HGS state to its coordinates related to the
state of deme p on level j, and let us write:

statusz : X — {inactive, new, active, stopped } (31)

to denote the projection extracting the status of the p-th deme on j-th level from the
whole system state.

It was shown by Schaefer et al. [59] that the passage between two consecutive HGS
states might be described by Markov transition probability function 7: X — M(X).
This mapping considers all stochastic operations performed by the state passage; i.e.,
evolution in all active demes (selection, crossover, mutation, and succession), efficien-
cy stopping condition evaluation (possibly changing deme status to stopped), and
conditional sprouting. Since state space X is finite, the Markov transition probability
function is characterized by probability transition matrix Q.

4.2.3. Computing first hitting time for HGS

Let us once again write S C D to denote all points called “solutions,” as in the
case of single-population search algorithms (see Section 4.1.1). There are at least two
possible ways of defining an interesting subset of the HGS states related to S that
the hierarchic search is intended to reach.

The first, simpler one is to take those states that contain at least one leaf deme
that incorporates at least one individual with a phenotype located in S.

X{={reX|IPpec{l,....gn}: deme,' () contains individuals from S,
status,'(z) € {active, stopped}} (32)
In the second case (more-suitable for multi-modal misfit functions), S is the union
of disjoint connected components Sy, ..., S,. Each S; may be a level set located in the
central part of the basin of attraction of a single local/global minimizer for the misfit
function. In this case, the target subset of HGS states are such that, for every set

S;,i=1,...,w, there exists at least one leaf deme containing at least one individual
with a phenotype located in S;. In both cases, the leaves might be active or stopped.

Xoy={rveX|Vie{l,...,w}3p; € {l,....gm}:
deme,: (r) contains individuals from S;, (33)
status) () € {active, stopped} }

Accordingly, in the case of HGS, we can consider two variants of the first hitting
time for S. Namely, we define the following two random variables:

HY =inf{t >0:2, € X'}, (34)
Hyy =inf{t>0:2,€ XJ,}. (35)

On the computational cost and complexity of stochastic inverse solvers 255

For both, we can repeat the results of Section 4.1.3. First of all:

Pr(v; € X5 wo & X5, w1 & XF) = (36)
36
ZytEXf Zyo,..',yt71€Xf Qyoyl s Qyt—Tyt—l Qyt—lyt Wgo’

where * stands for 1 or all and 7¥ is the initial distribution. Therefore, we have:

Pr (Hf = t) = Z Z Quoys -+ Qui—zye—r Quirye 7T20~ (37)

Ye€XZ Yo, yr—1EXT

The above equality allows us to compute the statistics of HY. In particular, we can
compute its expected value as follows:

400 if Pr (xt ¢ X2 for all t) >0,

S _ oo
E(H?) = ZtPr (Hf = t) otherwise. %)
t=0

Observation 5. [t is quite easy to see that the HGS Markov chain cannot be ergodic.
Nevertheless, due to the possible SGA/SEA ergodicity, each leaf (in fact, each deme)
is ergodic, provided the mutation rate is positive. Therefore, in the HY case, if we
guarantee that all levels are sprouted at least once, then we can be sure that the first
clause of (38) does not hold. This is because we shall obtain at least one leaf, and that
leaf shall reach S in a finite time. The HS, case is more complicated, as we have to
force multiple sprouting to obtain at least one leaf per connected component of S.

In any case, when the initial distribution is concentrated in a single point xg,
from (37), we have:

+o00 if Pr(z; ¢ X2) >0,
E, (HS) ={ — .
o () Z t Z Quoyr Quiys - Qui_1y, otherwise.

=0 yeXZy1,. Y1 EXET
(39)
And again, as in Section 4.1.3, it can be proven that E, (H®) is the unique nonne-
gative solution to the following linear system:

E,(H5) =0 fi X5
{ (HS) or € X§ (40)

E (HY) =14 cx QuyBy(HS) forz ¢ X7

Note that, since X is finite, E(H?) can be computed using (40) for any initial distri-

bution 7.

4.3. Complexity theory of finding all global optima

Let us now step back to the ideas from Section 3.4 regarding the computational
complexity of global and local searches. One of the important aspects of memetic

256 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

search algorithms in general (and of HGS specifically) is their ability to find many (or
all) global optima. In this section, we show that, from the point of view of complexity
theory, this task is much more demanding than the task of finding a single optimum
point.

There are many ways in which one can model the problem of finding all global
optima. Perhaps the most natural one is to require the solver to output a list of all of
them. From the point of view of theoretical analysis, such an approach is, however,
difficult. The reason is that, in our complexity-theoretic view of representing functions
(as Boolean circuits, with a given precision), it is perfectly possible that a function
might have exponentially many optima (compared to the length of its encoding).
Then, even the time needed to output them all (short of doing the actual computation)
would be exponential, and all complexity-theoretic analysis would be meaningless.
Thus, to avoid this problem, we consider the problem of counting how many global
optima there are.

Definition 19. In the #GLOBALOPTIMUM problem, we are given a function

f:(0,1) — R, and our goal is to count how many points xo there are such that,
for each x € (0,1), it holds that f(xo) = f(z).

How difficult is #GLOBALOPTIMUM? To answer this question, we need to consi-
der complexity theory of counting functions and its most prominent complexity class,
#P [67]. Intuitively speaking, #P is a counting variant of class NP. Formally, it is
defined as follows: let A be some problem from class NP associated with some sche-
me of providing certificates of membership (for example, recall that for SAT-3CNF,
a certificate was a valuation of a given formula’s variables under which the formula
evaluates to truth). Problem #A, the counting variant of A, is the problem where,
given an input for A, we ask how many different certificates there are for it. Class #P
is the class of all counting problems associated with the problems from NP2. However,
it is much more natural to think of #P in terms of its complete problems, of which
one of the best-known is the counting variant of the SAT-3CNF problem.
Definition 20. In #SAT-3CNF we are given Boolean formula F, over variables
T1,...,Tpn, tn conjunctive normal form, with at most three variables per clause. We
ask how many satisfying truth-assignments there are for F.

#SAT-3CNF is #P-complete in the strictest possible sense, that is, with re-
spect to parsimonious reductions (a discussion of various types of reductions between
counting problems is included (e.g., in the work of Faliszewski and Ogihara [23]); the
classic discussion of different reducibility types for decision problems is due to Ladner,
Lynch, and Selman [32]).

Definition 21. Let F' and G be two functions (that output nonnegative integers).
We say that F parsimoniously reduces to G if there is a polynomial-time computable
function ¢ such that, for each F'’s input x, it holds that F(z) = G(¢(x)).

2The formal definition of the class is more technical, and introducing it here is not necessary for
our discussion.

On the computational cost and complexity of stochastic inverse solvers 257

Using exactly the same reduction as from SAT-3CNF to LocaLOpTIMUM (The-
orem 15), it is easy to show that #SAT-3CNF reduces (in the parsimonious sense)
to #GLOBALOPTIMUM. In effect, we get the following result (a problem is #P-hard
if every problem in #P reduces to it):

Theorem 22. #GLOBALOPTIMUM is #P-hard.

This result requires discussion. First, it seems difficult to obtain #P-completeness
rather than #P-hardness (note that, for #P-completeness, we would need both #P-
hardness and membership in #P). For the membership problem, it seems that we
would need a polynomial-time algorithm for verifying if a given point is indeed a global
optimum. However, this problem is coNP-hard, and so a polynomial-time algorithm
is unlikely.

Second, this theorem can be seen as yet another argument that the problem of
computing all global optima (or even just counting them) is much more difficult than
the problem of finding some local optimum. Even though one might think that #P is
“simply a counting variant of NP” and, thus, is of the same “difficulty,” it seems that
this is not the case. The celebrated Toda’s theorem [77,78] says that the following
holds:

PH C p#Pl,

This statement means that any problem in the whole of the polynomial hierarchy
(which seems to be much bigger than NP and, in particular, includes DP) could be
solved in polynomial time, provided that, on each input, one could compute the value
of some #P-complete function for one argument. In our context, one could interpret
this as follows: if we were effectively able to count global optima, we could solve all
NP-complete problems, all coNP-complete problems, all DP-complete problems, and
many even more difficult ones. This means that being able to effectively count global
optima would give us much greater power than being able to, say, compute global or
local optima, and — in effect — counting global optima is a much harder task.

Naturally all of these results apply directly to HGS, and we can claim that either
HGS will have a worst-case exponential running time or we cannot guarantee its com-
plete success on every instance. However, we believe that a finer look is necessary. The
fact that counting global optima is #P-hard is formally correct, but the proof relies
on exploiting a rather unrealistic scenario. Indeed, in typical domains of application
of HGS, we can expect only several global optima (or, at best, polynomially many
of them), but not necessarily exponentially many (as is the case in the proof). Thus,
the complexity of counting them would rather fall into the class #FewP and not #P,
which is much easier (#FewP is a counting variant of the FewP class of Allender and
Rubinstein [1]). However, analysis of #FewP is more difficult because it is a promise
class and, to the best of our knowledge, does not have complete functions.

On the other hand, there is a very different set of complexity classes for local
search problems, including the class PLS [28,41], which models the typical heuristic
process of searching for a local optimum. Currently, we do not have such classes to

258 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

describe algorithms seeking global optima. Perhaps the model of HGS computation
could be used in this way.

5. Conclusions

The goal of this paper is to promote research in a rather understudied area of analyzing
the computational cost of complex stochastic strategies for solving parametric inverse
problems. This area has two main components: solving global optimization problems,
and solving forward problems (to evaluate the misfit function that we try to minimize).

For the first component, we provide a formal description of population-based
algorithms that manage single or multiple dependent demes (sub-populations). We
pay particular attention to genetic algorithms with heuristics, which can be modeled
as ergodic Markov chains. For example, we recall the conditions that may be useful
for defining stopping conditions (see Theorems 6 and 7 and Definition 8), as well
as provide some formulas that allow one to evaluate the probability of hitting the
solution in a single step of such strategies (see Observations 1, 2, and 3), and provide
a useful inequality that allows one to associate the probability of hitting a solution
with the notion of a convergence along a heuristic (see Observation 4).

We also review the simple method for evaluating the first hitting time for the
single-deme algorithm modeled by the ergodic Markov chain (see Section 4.1.3), and
we extend it to the case of HGS, a multi-deme hierarchic strategy (see Section 4.2).
We focus on the case in which at least the demes in the leaves are well-tuned (see;
again, Definition 8).

Finally, we also express the problems of finding local and global optima in terms
of a classic complexity theory. We formulate the natural result that finding a local
optimum of a function (expressed in a certain natural way) is an NP-complete task,
and we argue that finding a global optimum is a much harder, DP-complete, task.
Further, we argue that finding all global optima is, possibly, even harder (a #P-hard
task). These results provide a reassuring theoretical confirmation of the intuitively
clear relation between the hardness of these problems.

Regarding the second component of solving parametric inverse problems (the
forward problem solvers), we discuss the computational cost of hp-adaptive Finite
Element solvers and their rates of convergence with respect to the growing number
of degrees of freedom (see Section 3.1).

The presented results provide some useful taxonomy of problems and methods
of studying the computational cost and complexity of various strategies for solving
inverse parametric problems. Yet, we stress that our goal was not to deliver detailed
evaluations for particular algorithms applied to particular inverse problem, but rather
to try to identify possible ways of obtaining such results. We plan to extend this
research by detailed analysis of particular, important examples in the future.

On the computational cost and complexity of stochastic inverse solvers 259

Acknowledgements

The work presented in this paper has been partially supported by Polish National Scien-
ce Center grant DEC-2011/03/B/ST6/01393.

References

[1] Allender E., Rubinstein R.: P-Printable Sets. SIAM Journal on Computing,
vol. 17(6), pp. 1193-1202, 1988.

[2] Babuska I., Guo B.: The hp-version of the finite element method, Part I: The
basic approximation results. Computational Mechanics, vol. 1, pp. 21-41, 1986.

[3] Babuska I., Guo B.: The hp-version of the finite element method, Part IT: General
results and applications. Computational Mechanics, vol. 1, pp. 203-220, 1986.

[4] Banks H.T., Kunisch K.: Estimation Techniques for Distributed Parameter Sys-
tems. Birkhauser, Boston, 1989.

[5] Barabasz B., Gajda E., Migérski S., Paszyfiski M., Schaefer R.: Studying inverse
problems in elasticity by hierarchic genetic search. In: ECCOMAS thematic con-
ference on Inverse Problems in Mechanics of Structures and Materials, pp. 9-10,
2011.

[6] Barabasz B., Gajda-Zagoérska E., Migérski S., Paszynski M., Schaefer R., Smotka
M.: A hybrid algorithm for solving inverse problems in elasticity. International
Journal of Applied Mathematics and Computer Science, vol. 24(4), pp. 865-886,
2014.

[7] Barabasz B., Migérski S., Schaefer R., Paszynski M.: Multi-deme, twin adaptive
strategy hp-HGS. Inverse Problems in Science and Engineering, vol. 19(1), pp. 3—
16, 2011.

[8] Beume N., Laumanns M., Rudolph G.: Convergence Rates of (1+1) Evolutionary
Multiobjective Optimization Algorithms. In: R. Schaefer, C. Cotta, J. Kotodziej,
G. Rudolph, eds., Parallel Problem Solving from Nature — PPSN XI, Lecture
Notes in Computer Science, vol. 6238, pp. 597-606, Springer, 2010.

[9] Boender C., Rinnoy Kan A., Stougie L., Timmer G.: A Stochastic Method for
Global Optimization. Mathematical Programming, vol. 22, pp. 125-140, 1982.
[10] Burczynski T., Beluch W.: The Identification of Cracks Using Boundary Elements
and Evolutionary Algorithms. Engineering Analysis with Boundary FElements,

vol. 25(4-5), pp. 313-322, 2001.

[11] Burczynski T., Ku§ W., Dlugosz A., Orantek P.: Optimization and defect iden-
tification using distributed evolutionary algorithms. Engineering Applications of
Artificial Intelligence, vol. 17(4), pp. 337-344, 2004.

[12] Cabib E., Davini C., Chong-Quing R.: A problem in the optimal design of ne-
tworks under transverse loading. Quarterly of Applied Mathematics, vol. 48(2),
pp- 251-263, 1990.

260 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

[13] Caicedo J.M., Yun G.: A novel evolutionary algorithm for identifying multiple
alternative solutions in model updating. Structural Health Monitoring, vol. 10,
pp. 491-501, 2011.

[14] Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland,
1978.

[15] Cook S.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd ACM Symposium on Theory of Computing, pp. 151-158, ACM Press, 1971.

[16] Demkowicz L.: Computing with hp-Adaptive Finite Elements, Vol. I. One and
Two Dimensional Elliptic and Mazwell Problems. Chapman and Hall/CRC Ap-
plied Mathematics and Nonlinear Science, 2006.

[17] Demkowicz L., Kurtz J., Pardo P., Paszynski M., Rachowicz W., Zdunek A.: Com-
puting with hp-Adaptive Finite FElements, Vol. II. Frontiers: Three-Dimensional
Elliptic and Mazwell Problems with Applications. Chapman and Hall/CRC Ap-
plied Mathematics and Nonlinear Science, 2007.

[18] Denkowski Z., Migérski S., Papageorgiou N.: An Introduction to Nonlinear Ana-
lysis: Applications. Kluwer Academic/Plenum, 2003.

[19] Denkowski Z., Migérski S., Papageorgiou N.: An Introduction to Nonlinear Ana-
lysis: Theory. Kluwer Academic/Plenum, 2003.

[20] Descloux J.: Méthode Des Eléments Finis. Ecole Polytechnique Fédérale de Lau-
sanne, Lausanne, 1973.

[21] Doerr B., Jansen T., Sudholt D., Winzen C., Zarges C.: Optimizing Monotone
Functions Can Be Difficult. In: R. Schaefer, C. Cotta, J. Kotodziej, G. Rudolph,
eds., Parallel Problem Solving from Nature — PPSN XI, Lecture Notes in Com-
puter Science, vol. 6238, pp. 42-51, Springer, 2010.

[22] Engl H., Hanke M., Neubauer A.: Regularization of Inverse Problems, Mathema-
tics and its Applications, vol. 375. Springer-Verlag, Berlin Heidelberg, 1996.

[23] Faliszewski P., Ogihara M.: On the Autoreducibility of Functions. Theory of Com-
puting Systems, vol. 46(2), pp. 222-245, 2010.

[24] Gajda-Zagérska E., Schaefer R., Smotka M., Paszynski M., Pardo D.: A hy-
brid method for inversion of 3D DC logging measurements. Natural Computing,
vol. 14(3), pp. 355-374, 2015.

[25] Glover F., Kochenberger G.: Handbook of Metaheuristics. Kluwer Academic Pu-
blishers, 2002.

[26] Hemaspaandra L., Ogihara M.: The Complexity Theory Companion. Springer-
Verlag, 2002.

[27] Isakov V.: Inverse Problems for Partial Differential Equations. Springer, 2006.

[28] Johnson D., Papadimitriou C., Yannakakis M.: How Easy is Local Search. Journal
of Computer and System Sciences, vol. 37(1), pp. 79-100, 1988.

[29] Kolodziej J., Jakubiec W., Starczak M., Schaefer R.: Identification of the CMM
Parametric Errors by Hierarchical Genetic Strategy. In: ITUTAM Symposium on
Evolutionary Methods in Mechanics, pp. 187-196, Springer, 2004.

On the computational cost and complexity of stochastic inverse solvers 261

[30] Kolodziej J., Schaefer R., Paszyniska A.: Hierarchical genetic computation in opti-
mal design. Journal of Theoretical and Applied Mechanics, Computational Intel-
ligence, vol. 42(3), pp. 519-539, 2004.

[31] Koper K., Wysession M., Wiens D.: Multimodal function optimization with a ni-
ching genetic algorithm: A seismological example. Bulletin of the Seismological
Society of America, vol. 89(4), pp. 978-988, 1999.

[32] Ladner R., Lynch N., Selman A.: A Comparison of Polynomial Time Reducibili-
ties. Theoretical Computer Science, vol. 1(2), pp. 103-124, 1975.

[33] Lassig J., Sudholt D.: Experimental Supplements to the Theoretical Analysis of
Migration in the Island Model. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Ru-
dolph, eds., Parallel Problem Solving from Nature — PPSN XI, Lecture Notes in
Computer Science, vol. 6238, pp. 224-233, Springer, 2010.

[34] Léssig J., Sudholt D.: General Scheme for Analyzing Running Times of Parallel
Evolutionary Algorithms. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph,
eds., Parallel Problem Solving from Nature — PPSN XI, Lecture Notes in Com-
puter Science, vol. 6238, pp. 234-243, Springer, 2010.

[35] Mahfoud S.W.: Niching Methods. In: T. Back, D.B. Fogel, Z. Michalewicz, eds.,
Handbook of Evolutionary Computations, chap. C6.1, pp. C6.1:1-C6.1:4, IOP Pu-
blishing and Oxford University Press, 1997.

[36] Meruane V., Heylen W.: Damage Detection with Parallel Genetic Algorithms and
Operational Modes. Structural Health Monitoring, vol. 9, pp. 481-496, 2009.

[37] Neri F., Cotta C., Moscato P., eds.: Handbook of Memetic Algorithms, Studies in
Computational Intelligence, vol. 379. Springer-Verlag, Berlin Heidelberg, 2012.

[38] Norris J.R.: Markov Chains. Cambridge University Press, Cambridge, 1997.

[39] Osman 1., Kelly J.: Meta-Heuristics: Theory and Applications. Kluwer Academic
Publishers, 1996.

[40] Papadimitriou C.: Computational Complexity. Addison-Wesley, 1994.

[41] Papadimitriou C., Schéffer A., Yannakakis M.: On the complexity of local search.
In: Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 84-94,
ACM Press, 1990.

[42] Papadimitriou C., Yannakakis M.: The Complexity of Facets (and some Facets of
Complexity). Journal of Computer and System Sciences, vol. 28(2), pp. 244-259,
1984.

[43] Pardalos P., Romeijn H.: Handbook of Global Optimization (Nonconvexr Optimi-
zation and its Applications), vol. 2. Kluwer, 1995.

[44] Paszynska A., Grabska E., Paszynski M.: A Graph Grammar Model of the hp
Adaptive Three Dimensional Finite Element Method. Part I. Fundamenta Infor-
maticae, vol. 114(2), pp. 149-182, 2012.

[45] Paszynska A., Grabska E., Paszynski M.: A Graph Grammar Model of the hp
Adaptive Three Dimensional Finite Element Method. Part II. Fundamenta In-
formaticae, vol. 114(2), pp. 183-201, 2012.

[46] Paszynska A., Paszyniski M., Grabska E.: Graph Transformations for Modeling

262 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

hp-Adaptive Finite Element Method with Triangular Elements. Lecture Notes in
Computer Science, vol. 5103, pp. 604-613, 2008.

[47] Paszynska A., Paszynski M., Grabska E.: Graph Transformations for Modeling
hp-Adaptive Finite Element Method with Mixed Triangular and Rectangular
Elements. Lecture Notes in Computer Science, vol. 5545, pp. 875-884, 2009.

[48] Paszynski M.: On the Parallelization of Self-Adaptive hp-Finite Element Me-
thods: Part I: Composite Programmable Graph Grammar Model. Fundamenta
Informaticae, vol. 93(4), pp. 411-434, 2009.

[49] Paszynski M.: On the Parallelization of Self-Adaptive hp-Finite Element Me-
thods: Part II: Partitioning Communication Agglomeration Mapping (PCAM)
Analysis. Fundamenta Informaticae, vol. 93(4), pp. 435-457, 2009.

[50] Paszynski M., Barabasz B., Schaefer R.: Efficient adaptive strategy for solving
inverse problems. In: Computational Science — ICCS 2007, vol. 4487, pp. 342-349,
Springer, 2007.

[51] Paszynski M., Demkowicz L.: Parallel Fully Automatic hp-Adaptive 3D Finite
Element Package. Engineering with Computers, vol. 22(3-4), pp. 255-276, 2006.

[62] Paszynski M., Schaefer R.: Graph grammar-driven parallel partial differential equ-
ation solver. Concurrency and Computation: Practice and Experience, vol. 22(9),
pp. 1063-1097, 2010.

[63] Rachowicz W., Pardo D., Demkowicz L.: Fully Automatic hp-Adaptivity in Three
Dimensions. Computer Methods in Applied Mechanics and Engineering (J.H. Ar-
gyris Memorial Issue), vol. 37-40, pp. 4816-4842, 1995.

[54] Rudolph G.: Takeover Time in Parallel Populations with Migration. In: Proce-
edings of the Second International Conference on Bioinspired Optimization Me-
thods and their Applications (BIOMA 2006), pp. 63-72, Josef Stefan Institute,
Ljubljana, 2006.

[55] Ryszka I., Paszynska A., Grabska E., Sieniek M., Paszynski M.: Graph Transfor-
mation Systems for Modeling Three Dimensional Finite Element Method: Part
1. Fundamenta Informaticae, vol. 140(2), pp. 129-172, 2015.

[56] Schaefer R.: The role of heuristics in serial and parallel genetic search. In: Abstract
Book of the 3rd Conference on Numerical Analysis, Krynica, Poland, pp. 16-17,
2002, ISBN 978-3-642-15843-8.

[57] Schaefer R.: Foundation of Genetic Global Optimization, with Chapter 6 by Telega
H., Studies in Computational Intelligence Series, vol. 74. Springer, 2007.

[58] Schaefer R., Barabasz B.: Asymptotic Behavior of hp-HGS (hp-Adaptive Fini-
te Element Method Coupled with the Hierarchic Genetic Strategy) by Solving
Inverse Problems. In: Computational Science — ICCS 2008, Lecture Notes in
Computer Science, vol. 5103, pp. 682-691, Springer, 2008.

[59] Schaefer R., Byrski A., Kolodziej J., Smotka M.: An agent-based model of hierar-
chic genetic search. Computers and Mathematics with Applications, vol. 64(12),
pp. 3763-3776, 2012.

[60] Schaefer R., Byrski A., Smotka M.: Island Model as Markov Dynamic System.

On the computational cost and complexity of stochastic inverse solvers 263

International Journal of Applied Mathematics and Computer Science, vol. 22(4),
pp. 971-984, 2012.

[61] Schaefer R., Jabloniski Z.: On the convergence of sampling measures in the global
genetic search. In: Parallel Processing and Applied Mathematics — PPAM IV,
Lecture Notes in Computer Science, vol. 2328, pp. 593-600, Springer, 2002.

[62] Schaefer R., Kolodziej J.: Genetic search reinforced by the population hierarchy.
In: K. De Jong, R. Poli, J. Rowe, eds., Foundations of Genetic Algorithms 7,
pp- 383-399, Morgan Kaufman, 2003.

[63] Schauder J.: Der Fixpunktsatz in Funktionalraumen. Studia Mathematica, vol. 2,
pp. 171-180, 1930.

[64] Scholz D.: Deterministic Global Optimization. Geometric Branch-and-bound Me-
thods and their Applications. Springer Optimization and Application Series 63,
Springer, 2013.

[65] Schraudolph N., Belew R.: Dynamic parameter encoding for genetic algorithms.
Machine Learning Journal, vol. 9(1), pp. 9-21, 1992.

[66] Schwab C.: P and hp Finite Element Methods. Oxford University Press, 1998.

[67] Simon J.: On Some Central Problems in Computational Complezity. Ph.D. the-
sis, Cornell University, Ithaca, N.Y., 1975, available as Cornell Department of
Computer Science Technical Report TR75-224.

[68] Skolicki Z., Jong K.D.: Improving Evolutionary Algorithms with Multi-
representation Island Models. In: Proceedings of 8th International Conference
on Parallel Problem Solving from Nature — PPSN VIII, vol. 3242, pp. 420-429,
Springer, 2004.

[69] Skolicki Z., Jong K.D.: The Influence of Migration Sizes and Intervals on Island
Models. In: Proceedings of Genetic and Evolutionary Computation Conference —
GECCO-2005, pp. 1295-1302, ACM Press, 2005.

[70] Smotka M., Gajda-Zagérska E., Schaefer R., Paszyfiski M., Pardo D.: A Hybrid
Method for Inversion of 3D AC Resistivity Logging Measurements. Applied Soft
Computing, vol. 36, pp. 442-456, 2015.

[71] Stockmeyer L.: The Polynomial-Time Hierarchy. Theoretical Computer Science,
vol. 3(1), pp. 1-22, 1976.

[72] Strug B., Paszyfiska A., Paszyniski M., Grabska E.: Using a Graph Grammar Sys-
tem in the Finite Element Method. Applied Mathematics and Computer Science,
vol. 23(4), pp. 839-853, 2013.

[73] Sudholt D.: General Lower Bounds for the Running Time of Evolutionary Algori-
thms. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph, eds., Parallel Problem
Solving from Nature — PPSN XI, Lecture Notes in Computer Science, vol. 6238,
pp- 124-133, Springer, 2010.

[74] Tarantola A.: Inverse Problem Theory and Methods for Model Parameter Esti-
mation. STAM, 2005.

[75] Telega H.: Parallel Algorithms for Solving Selected Inverse Problems. PhD Thesis,
AGH University of Science and Technology, 1999.

264 Piotr Faliszewski, Maciej Smotka, Robert Schaefer, Maciej Paszyriski

[76] Telega H., Schaefer R., Cabib E.: A Parallel Genetic Clustering for Inverse Pro-
blems. In: Applied Parallel Computing: Large Scale Scientific and Industrial Pro-
blems, Lecture Notes in Computer Science, vol. 1541, pp. 551-556, Springer, 1998.

[77] Toda S.: PP Is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on
Computing, vol. 20(5), pp. 865-877, 1991.

[78] Toda S., Ogiwara M.: Counting Classes are at Least as Hard as the Polynomial-
Time Hierarchy. SIAM Journal on Computing, vol. 21(2), pp. 316-328, 1992.

[79] Vose M.: The Simple Genetic Algorithm. MIT Press, 1999.

[80] Whitley D., Gordon V.: Serial and Parallel Genetic Algorithms as Function Opti-
mizers. In: S. Forrest, ed., Proceedings of ICGA’97, pp. 177-218, Morgan Kauf-
man, 1993.

[81] Whitley D., Mathias K., Fitzhorn P.: Delta Coding: An Iterative search Strategy.
In: R. Belew, L. Booker, eds., Proceedings of the 4th International Conference on
Genetic Algorithms, pp. 77-84, Morgan Kaufman, 1991.

[82] Whitley D., Soraya S., Heckerdorn R.: Island Model Genetic Algorithms. In: Pro-
ceedings of AISB’97 Workshop on Evolutionary Computing, pp. 112-129, 1997.

[83] Wierzba B., Semczuk A., Kolodziej J., Schaefer R.: Hierarchical Genetic Strategy
with Real Number Encoding. In: Proceedings of the 6th Conference on Evolutio-
nary Algorithms and Global Optimization, pp. 231-237, 2003.

Affiliations

Piotr Faliszewski
AGH University of Science and Technology, Krakow, Poland, faliszew@agh.edu.pl

Maciej Smotka
AGH University of Science and Technology, Krakow, Poland, smolka@agh.edu.pl

Robert Schaefer

AGH University of Science and Technology, Krakow, Poland, schaefer@agh.edu.pl
Maciej Paszynski

AGH University of Science and Technology, Krakow, Poland, paszynsk@agh.edu.pl

Received: 20.05.2015
Revised: 24.11.2015
Accepted: 24.11.2015

