PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

NURBS-based optimization of natural frequencies for bidirectional functionally graded beams

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the nurbs-based isogeometric analysis is developed to optimize natural frequencies of bidirectional functionally graded (BFG) beams by tailoring their material distribution. One-dimensional Non-Uniform Rational B-Spline (NURBS) basis functions are utilized to construct the geometry of beam as well as approximate solutions, whereas the gradation of material property is represented by two-dimensional basis functions. To optimize the material composition, the spatial distribution of volume fractions of material constituents is defined using the higher order interpolation of volume fraction values that are specified at a finite number of control points. As an optimization algorithm, the differential evolution (DE) algorithm is employed to optimize the volume fraction distribution that maximizes each of the first three natural frequencies of BFG beams. A numerical analysis is performed on the examples of BFG beams with various boundary conditions and slenderness ratios. The obtained results are compared with the previously published results in order to show the accuracy and effectiveness of the present approach. The effects of number of elements, boundary conditions and slenderness ratios on the optimized natural frequencies of BFG beams are investigated.
Rocznik
Strony
337--364
Opis fizyczny
Bibliogr. 40 poz., rys. kolor.
Twórcy
autor
  • Department of Architectural Engineering Sejong University 209, Neungdong-ro, Gwangjin-gu Seoul 05006, S. Korea
autor
  • Department of Architectural Engineering Sejong University 209, Neungdong-ro, Gwangjin-gu Seoul 05006, S. Korea
autor
  • Department of Architectural Engineering Sejong University 209, Neungdong-ro, Gwangjin-gu Seoul 05006, S. Korea
autor
  • Department of Architectural Engineering Sejong University 209, Neungdong-ro, Gwangjin-gu Seoul 05006, S. Korea
Bibliografia
  • 1. K.K. Pradhan, S. Chakraverty, Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method, Composites Part B: Engineering, 51, 175–184, 2013.
  • 2. P.T. Vo, H.T. Thai, T.K. Nguyen, F. Inam, J. Lee, A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Composite Structures, 119, 1–12, 2015.
  • 3. H.T. Thai, P.T. Vo, Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories, International Journal of Mechanical Sciences, 62, 57–66, 2012.
  • 4. Y. Huang, X.F. Li, Bending and vibration of circular cylindrical beams with arbitrary radial nonhomgeneity, International Journal of Mechanical Sciences, 52, 595–601, 2010.
  • 5. M. Simsek, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nuclear Engineering and Design, 240, 697–705, 2010.
  • 6. M. Aydogdu, V. Taskin, Free vibration analysis of functionally graded beams with simply supported edges, Materials & Design, 28, 1651–1656, 2007.
  • 7. D.S. Mashat, E. Carrera, A.M. Zenkour, S.A. Al Khateeb, M. Filippi, Free vibration of FGM layered beams by various theories and finite elements, Composites Part B: Engineering, 59, 269–278, 2014.
  • 8. X.F. Li, Y.A. Kang, J.X. Wu, Exact frequency equations of free vibration of exponentially functionally graded beams, Applied Acoustics, 74, 413–420, 2013.
  • 9. C. Jin, X. Wang, Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method, Composite Structures, 125, 41–50, 2015.
  • 10. S.A. Sina, H.M. Navazi, H. Haddadpour, Exact frequency equations of free vibration of exponentially functionally graded beams, Materials & Design, 30, 741–747, 2009.
  • 11. M. Nemat-Alla, Reduction of thermal stresses by developing two-dimensional functionally graded materials, International Journal of Solids and Structures, 40, 7339–7356, 2003.
  • 12. C.F. Lü, W.Q. Chen, R.Q. Xu, C.W. Lim, Semi-analytical elasticity solutions for bidirectional functionally graded beams, International Journal of Solids and Structures, 45, 258–275, 2008.
  • 13. L. Zhao, W.Q. Chen, C.F. Lü, Symplectic elasticity for bi-directional functionally graded materials, Mechanics of Materials, 54, 32–42, 2012.
  • 14. M. Simsek, Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions, Composite Structures, 133, 968–978, 2015.
  • 15. M. Simsek, Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions, Composite Structures, 149, 304–314, 2016.
  • 16. Z.H. Wang, X.H. Wang, G.D. Xu, S. Cheng, T. Zeng, Free vibration of two-directional functionally graded beams, Composite Structures, 135, 191–198, 2016.
  • 17. D. Hao, C. Wei, Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams, Composite Structures, 141, 253–263, 2016.
  • 18. A.J. Goupee, S.S. Vel, Optimization of natural frequencies of bidirectional functionally graded beams, Structural and Multidisciplinary Optimization, 32, 473–484, 2006.
  • 19. L.F. Qian, H.K. Ching, Static and dynamic analysis of 2-D functionally graded elasticity by using meshless local Petrov-Galerkin method, Journal of the Chinese Institute of Engineers, 27, 491–503, 2004.
  • 20. L.F. Qian, R.C. Batra, Design of bidirectional functionally graded plate for optimal natural frequencies, Journal of Sound and Vibration, 280, 415–424, 2005.
  • 21. C.M.C. Roque, P.A.L.S. Martins, Differential evolution for optimization of functionally graded beams, Composite Structures, 133, 1191–1197, 2015.
  • 22. C.M.C. Roque, P.A.L.S. Martins, A.J.M. Ferreira, R.M.N. Jorge, Differential evolution for free vibration optimization of functionally graded nano beams, Composite Structures, 156, 29–34, 2016.
  • 23. G.C. Tsiatas, A.E. Charalampakis, Optimizing the natural frequencies of axially functionally graded beams and arches, Composite Structures, 160, 256–266, 2017.
  • 24. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195, 2005.
  • 25. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis, Toward Integration of CAD and FEA, Wiley, New York, 2009.
  • 26. C. Adam, S. Bouaddallah, M. Zarroug, H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams, Computer Methods in Applied Mechanics and Engineering, 279, 1–28, 2014.
  • 27. F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina, A. Reali, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Computer Methods in Applied Mechanics and Engineering, 263, 113–126, 2013.
  • 28. R. Bouclier, T. ElGuedj, A. Combescure, Locking free isogeometric formulations of curved thick beams, Computer Methods in Applied Mechanics and Engineering, 245-246, 144–162, 2012.
  • 29. J. Kiendl, F. Auricchio, T.J.R. Hughes, A. Reali, Single-variable formulations and isogeometric discretizations for shear deformable beams, Computer Methods in Applied Mechanics and Engineering, 284, 988–1004, 2015.
  • 30. A.T. Luu, N.I. Kim, J. Lee, NURBS-based isogeometric vibration analysis of generally laminated deep curved beams with variable curvature, Composite Structures, 119, 150–165, 2015.
  • 31. H. Kapoor, R.K. Kapania, Geometric nonlinear NURBS isogeometric finite element analysis of laminated composite plates, Composite Structures, 94, 3434–3447, 2012.
  • 32. S. Shojaee, N. Valizadeh, E. Izadpanah, T. Bui, T.V. Vu, Free vibration and bucking analysis of laminated composite plates using the NURBS-based isogeometric finite element method, Composite Structures, 94, 1677–1693, 2012.
  • 33. C.H. Thai, H. Nguyen-Xuan, N. Nguyen-Thanh, T.H. Le, T. Nguyen-Thoi, T. Rabczuk, Static, free vibration, and buckling analysis of laminated composite Reissner Mindlin plates using NURBS-based isogeometric approach, International Journal for Numerical Methods in Engineering, 91, 571–603, 2012.
  • 34. Y. Bazilevs, M.C. Hsu, J. Kiendl, R. Wüchner, K.U. Bletzinger, 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, International Journal for Numerical Methods in Fluids, 65, 236–253, 2011.
  • 35. D.J. Benson, Y. Bazilevs, M.C. Hsu, T.J.R. Hughes, Isogeometric shell analysis: The Reissner-Mindlin shell, Computer Methods in Applied Mechanics and Engineering, 199, 276–289, 2010.
  • 36. D.J. Benson, Y. Bazilevs, M.C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 200, 1367–1378, 2011.
  • 37. J. Kiendl, K.U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements, Computer Methods in Applied Mechanics and Engineering, 198, 3902–3914, 2009.
  • 38. T. Mori, T. Tanaka, Average stresses in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 571–574, 1973.
  • 39. S.H. Shen, Z.X. Wang, Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates, Composite Structures, 94, 2197–2208, 2012.
  • 40. D. Simon, Evolutionary Optimization Algorithms, Wiley, New Jersey, 2013. 41. A.E. Alshorbagy, M.A. Eltaher, F.F. Mahmoud, Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling, 35, 412–425, 2011.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d677a12-08ef-4388-a517-78cd5b0fa412
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.