PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical Composition of Spring Rapeseed Grown in Copper-contaminated Soil Amended with Halloysite and Zeolite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to determine the effect of soil contamination with copper doses of 0, 150, 300, and 450 mg.kg-1 of soil and the application of zeolite, raw and modified halloysite on the biomass of spring rapeseed and the content of nitrogen compounds and macronutrients in the above-ground parts of the tested plants. The content of macronutrients in plants was determined spectrophotometrically. The applied soil amendments and copper doses led to significant variations in the concentrations of the analyzed nutrients in spring rapeseed. Zeolite and halloysite were most effective in increasing the average above-ground biomass of the tested plants. Zeolite had a beneficial effect on the content of total nitrogen, ammonia nitrogen and phosphorus in the above-ground parts of spring rapeseed. Raw halloysite increased the content of sodium and calcium, whereas modified halloysite contributed to an increase in the nitrogen, potassium, sodium, calcium and magnesium content of the tested plants.
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Warsaw University of Life Sciences-SGGW, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-773 Warsaw, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Management and Agriculture, Pl. Łódzki 4, 10-727 Olsztyn, Poland
Bibliografia
  • 1. Adlassnig W., Weiss Y.S., Sassmann S., Steinhauser G., Hofhansl F., Baumann N., Lichtscheidl I.K. Lang I. 2016. The copper spoil heap Knappenberg, Austria, as a model for metal habitats – Vegetation, substrate and contamination. Science of the Total Environment, 563–564, 1037–1049.
  • 2. Arora N., Patel A., Pruthi P.A., Pruthi V. 2016. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, 213, 79–87.
  • 3. Bellussi G., Millini R., Pollese P. 2015. An industrial perspective on the impact of Haldor Topsøe on research and development in catalysis by zeolites. Journal of Catalysis, 328, 11–18.
  • 4. Blanch M., Fernandez-Caballero C., Sanchez-Ballesta M.T., Escribano M.I., Merodio C. 2014. Accumulation and distribution of potassium and its association with water balance in the skin of Cardinal table grapes during storage. Scientia Horticulturae, 175, 223–228.
  • 5. Bremner J.M. 1965. Total nitrogen. In: Methods of soil analysis, part 2. Chemical and microbiological properties. Black CA et al. (eds). American Society of Agronomy, Madison, WI. Agronomy, 9, 1149–1178.
  • 6. Böhm J., Scherzer S., Shabala S., Krol E., Neher E., Mueller T.D., Hedrich R. 2016. Venus flytrap HKT1- type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability. Molecular Plant, 9, 3, 428–436.
  • 7. Cavell A.J. 1955. The colorimetric determination of phosphorous in plant materials. Journal of the Science of Food and Agriculture, 6, 479–481.
  • 8. Conway J.R., Keller A.A. 2016. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release. Water Research, 98, 250–260.
  • 9. Cravero F., Fernández L., Marfil S., Sánchez M., Maiza P., Martínez A. 2016. Spheroidal halloysites from Patagonia, Argentina: Some aspects of their formation and applications. Applied Clay Science, 131, 48–58.
  • 10. Dhiman S.S., Selvaraj C., Li J., Singh R., Zhao X., Kim D., Kim J.Y., Kang Y.C., Lee J.K. 2016. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel, 183, 107–114.
  • 11. Egli M., Filip D., Mavris C., Fischer B., Götze J., Raimondi S., Seibert J. 2012. Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier fore field. Geoderma, 189–190, 215–226.
  • 12. Fernández-Calviño D., Bååth E. 2016. Interaction between pH and Cu toxicity on fungal and bacterial performance in soil. Soil Biology and Biochemistry, 96, 20–29.
  • 13. Fronczyk J. Radziemska M., Mazur Z. 2015. Copper removal from contaminated groundwater using natural and engineered limestone sand in permeable reactive barriers. Fresenius Environmental Bulletin, 24, 1a, 228–234.
  • 14. Gomes M.P., Soares A.M., Garcia Q.S. 2014. Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic. Journal of Hazardous Materials, 276, 97–104.
  • 15. Goretti E., Pallottini M., Ricciarini M.I., Selvaggi R., Cappelletti D. 2016. Heavy metals bioaccumulation in selected tissues of red swamp cray fish: An easy tool for monitoring environmental contamination levels. Science of the Total Environment, 559, 339–346.
  • 16. Guo W., Nazim H., Liang Z., Yang D. 2016. Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4, 2, 83–91.
  • 17. Jin X.L, Ma C.L, Yang L.T., Chen L.S. 2016. Alterations of physiology and gene expression due to long-term magnesium-deficiency differ between leaves and roots of Citrus reticulata. Journal of Plant Physiology, 198, 103–115.
  • 18. Kubicka H., Jaroń N. 2016. The action of copper ions on the growth of inbred lines of rye seedlings (Secale cereale L.). Environmental Protection and Natural Resources, 48, 96–103 [in Polish].
  • 19. Leszczyńska D., Kwiatkowska-Malina J. 2012. Effect of soil contamination on yield and content of main macroelements in winter wheat. Proceedings of ECOpole, 6, 2, 743–748.
  • 20. Lee K.X., Valla J.A. 2017. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Applied Catalysis B: Environmental, 201, 359–369
  • 21. Li X., Yang Q., Ouyang J., Yang H., Chang S. 2016. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Applied Clay Science, 126, 306–312.
  • 22. Likar M., Vogel-Mikus K., Potisek M., Hancevic K., Radic T., Necemer M., Regvar M. 2015. Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment, 505, 724–731.
  • 23. Mazur Z., Radziemska M., Maczuga O., Makuch A. 2013. Heavy metal concentrations in soil and moss surroundings railroad. Fresenius Environmental Bulletin, 22, 4, 955–961.
  • 24. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Methods for analysis and evaluation of soil and plant properties. IOŚ Warsaw, 334 pp.
  • 25. Parviainen A., Suárez-Grau J.M., Pérez-López R., Nieto J.M., Garrido C.J., Cobo-Cárdenas G. 2016. Combined microstructural and mineralogical phase characterization of gallstones in a patient-based study in SW Spain – Implications for environmental contamination in their formation. Science of the Total Environment, 573, 433–443.
  • 26. Picard F., Chaouki J. 2016. Selective extraction of heavy metals from two real calcium-rich contaminated soils by a modified NTA. Journal of Hazardous Materials, 318, 48–53.
  • 27. Radziemska M., Mazur Z., Jeznach J. 2013. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chemical Engineering Transactions, 32, 301–306.
  • 28. Radziemska M., Jeznach J., Mazur Z., Fronczyk J., Bilgin A. 2016a. Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils. Journal of Water and Land Development, 28, 53–60.
  • 29. Radziemska M., Mazur Z., Fronczyk J., Jeznach J. 2016b. Effect of reactive materials on the content of selected elements in Indian mustard grown in Cr(VI)-contaminated soils. Journal of Ecological Engineering, 17, 2, 141–147.
  • 30. Radziemska M., Mazur Z. 2016c. Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. Journal of Ecological Engineering, 17, 3, 125–133.
  • 31. Radziemska M., Mazur Z., Fronczyk J., Matusik J. 2016d. Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (Brassica juncea L.). Clay Minerals, 51, 489–497.
  • 32. Saadani O., Fatnassi I.C., Chibou M., Abdelkrim S., Barhoumi F., Jebara M., Jebara S.H. 2016. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicology and Environmental Safety, 130, 263–269.
  • 33. Szyszko E. 1982. Instrumental analytical method. PZWL Warsaw, pp. 623
  • 34. Tlustoš P., Száková J., Korínek K., Pavlíková D., Hanč A.; Balík J. 2006. The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant, Soil and Environment, 52, 1, 16–24.
  • 35. Wyszkowski M., Radziemska M. 2010. Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. Journal of Toxicology and Environmental Health, Part A, 73, 17–18, 1274–1282.
  • 36. Wyszkowski M., Radziemska M. 2013a. Assessment of tri- and hexavalent chromium phytotoxicity on Oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air and Soil Pollution, 244, 1619–1632.
  • 37. Wyszkowski M., Radziemska M. 2013b. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.). Fresenius Environmental Bulletin, 22, 4, 979–986.
  • 38. Yan X., Wang H., Wang Q., Rudstam L.G. 2013. Risk spreading, habitat selection and division of biomass in a submerged clonal plant: Responses to heterogeneous copper pollution. Environmental Pollution, 174, 114–120.
  • 39. Zhang L., Pan Y., Lv W., Xiong Z.T. 2014. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino. Ecotoxicology and Environmental Safety, 104, 278–284.
  • 40. Zhang X., Wang L., Zhou A., Zhou Q., Huang X. 2016. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain. Ecotoxicology and Environmental Safety, 126, 62–70.
  • 41. Zhou S., Sawicki A., Willows R.D., Luo M. 2012. C-terminal residues of Oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Letters, 586, 3, 205–210.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d664bd6-2195-4963-9da5-8d92125ddfe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.