Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There are many benefits of building construction with prefabricated thermo active ceilings technology, and the most highlighted are: short lead time, ease of installation, low price, lack of taking up space in a room and additionally the possibility of working in heating and/or cooling mode. An analysis was carried out to illustrate the factors that influence the thermal output of a ceiling heating system in residential buildings located in 5 climate zones in Poland and 2 in Ukraine. The thermal loads were determined for the entire building, designed in accordance with the regulations in force in each country, for the flats and particular rooms (considering the heat exchange between the flats according to PN-EN 12831:2006). An average heating medium temperature of 34°C was assumed. The results were compared with the achievable heating capacity of the ceiling system, which results from the difference between the heating medium temperature and the indoor room temperature. It was investigated that the system achieves the calculated output in all climate zones in Poland, while it will not be sufficient in Ukraine. This is due to both less stringent building thermal protection regulations and different indoor design temperature values, resulting in a higher average temperature in the flat. When analysed on a room-by-room basis, it became apparent that in all considered locations there were rooms for which the heating capacity was insufficient. In the climate zones I to IV in Poland, the problem concerns only bathrooms, where in this case quite often the surface heating can be combined with a supplementary electric radiator. In the V climate zone in Poland and both in Ukraine, the solution to the power shortage under design conditions may be: building construction according to a higher energy standard, increasing the supply temperature (with the limitation of maximum ceiling surface temperature to 35°C for living spaces) or using additional heating elements not only in bathrooms. A novel part of the article discusses calculated power shortages in relation to climate change and the external design temperatures suggested by sources other than the standard.
Czasopismo
Rocznik
Tom
Strony
151--161
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Assistant Prof., Wroclaw University of Science and Technology, Faculty of Environmental Engineering,Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
autor
- Assistant Prof., Wroclaw University of Science and Technology, Faculty of Environmental Engineering,Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- [1] Kordana, S., Pochwat, K., Słyś, D. & Starzec, M. (2019). Opportunities and Threats of Implementing Drain Water Heat Recovery Units in Poland. Resources, 8, 88, doi:10.3390/resources8020088.
- [2] Amanowicz, Ł. & Wojtkowiak, J. (2018). Experimental Investigations of Thermal Performance Improvement of Aluminum Ceiling Panel for Heating and Cooling by Covering Its Surface with Paint. E3S Web Conference, 44, 00002, doi:10.1051/e3sconf/20184400002.
- [3] Causone, F., Corgnati, S.P. Filippi, M. & Olesen, B.W. (2009). Experimental Evaluation of Heat Transfer Coefficients between Radiant Ceiling and Room. Energy Build., 41, 622–628, doi:10.1016/j.enbuild.2009.01.004.
- [4] DX – System Stropowy, (2022).
- [5] Sinacka, J. (2019). Stropy i Sufity Grzewczo-Chłodzące o Dużej Pojemności Cieplnej Thermally Activated Building Systems with High Thermal Capcity. Materiały Budowlane, 1, 56–58, doi:10.15199/33.2019.01.10.
- [6] Dudkiewicz, E. & Fidorów-Kaprawy, N. (2022). Analiza Energetyczna Wydajności Stropu Grzewczego Na Przykładzie Budynku Mieszkalnego w Niemczech, Polsce i Ukrainie. Materiały Budowlane, 1, 86–89, doi:10.15199/33.2022.09.11.
- [7] Zhelykh, V., Shepitchak, V., Spodyniuk, N. & Gulai, B. (2017). Modeling of the Process of Heat Regime Formation in the Irradiation Area of Infrared Heater. Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 20, 83–90, doi:10.17512/bozpe.2017.2.11.
- [8] Tian, Z., Yang, L., Wu, X. & Guan, Z. A Field (2020). Study of Occupant Thermal Comfort with Radiant Ceiling Cooling and Overhead Air Distribution System. Energy Building, 223, 109949, doi:10.1016/j.enbuild.2020.109949.
- [9] Reza Safizadeh, M., Schweiker, M. & Wagner, A. (2018). Experimental Evaluation of Radiant Heating Ceiling Systems Based on Thermal Comfort Criteria. Energies 11, doi:10.3390/en11112932.
- [10] Fidorów-Kaprawy, N., Dudkiewicz, E. & Zhelykh, V. (2022). Performance Analysis of Systems Powered by a Ground Source Heat Pump. Rocznik Ochrony Środowiska, 24, 294–306, doi:10.54740/ros.2022.021
- [11] Cholewa, T.; Rosiński, M.; Spik, Z.; Dudzińska, M.R. & Siuta-Olcha, A. (2013). On the Heat Transfer Coefficients between Heated/Cooled Radiant Floor and Room. Energy Build., 66, 599–606, doi:10.1016/j.enbuild.2013.07.065.
- [12] Wojtkowiak, J., Amanowicz, Ł. (2016). Badania Wydajności Cieplnej Aluminiowego Sufitowego Panelu Grzewczo-Chłodzącego. Ciepłownictwo Ogrzewnictwo Wentylacja, 1, 27–31, doi:10.15199/9.2016.10.4.
- [13] Kosonen, R., Oy, H., Mustakallio, P., Bolashikov, Z., Kostov, K., Kolencikova, S. & Melikov, A.K. (2014). Thermal Comfort with Radiant and Convective Cooling Systems. Rehva Journal, 6, 47–51.
- [14] Narowski, P. (2020). Parametry Obliczeniowe Powietrza Zewnętrznego i Strefy Klimatyczne Polski Do Obliczania Mocy w Systemach Chłodzenia, Wentylacji i Klimatyzacji Budynków. Instal, 12, 21–30, doi:10.36119/15.2020.12.3.
- [15] DBNV.2.6-31:2016 Constructions of Buildings. Insulation of Buildings.
- [16] EN 12831 Heating Systems in Buildings - Method for Calculation of the Design Heat Load.
- [17] Narowski, P. (2020). Zaktualizowane Obliczeniowe Temperatury Powietrza Zewnętrznego i Strefy Klimatyczne Polski Do Wyznaczania Projektowego Obciążenia Cieplnego Dla Ogrzewania Budynków. Rynek Energii, 3.
- [18] http://ashrae-meteo.info/v2.0/places.php?continent=Europe.
- [19] https://www.izomat.com.ua/temperaturnye-zony-ukrainy/
- [20] Obwieszczenie Ministra Inwestycji i Rozwoju z Dnia 8 Kwietnia 2019 r. w Sprawie Ogłoszenia Jednolitego Tekstu Rozporządzenia Ministra Infrastruktury w Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Budynki i Ich Usytuowanie.
- [21] Kuhnhenne, M. (2018). Dennert DX Therm Messung Und Berechnung Der Thermischen Leistung, Aachen.
- [22] Cholewa, T.; Anasiewicz, R.; Siuta-Olcha, A.; Skwarczynski, M.A. (2017). On the Heat Transfer Coefficients between Heated/Cooled Radiant Ceiling and Room. Appl. Therm. Eng., 117, 76–84, doi:10.1016/j.applthermaleng.2017.02.019.
- [23] EN 1264-2:2021 Water Based Surface Embedded Heating and Cooling Systems. Floor Heating. Methods for the Determination of the Thermal Output Using Calculations and Experimental Tests;
- [24] Ołtarzewska, A. & Krawczyk, D.A. (2022). Analysis of the Influence of Selected Factors on Heating Costs and Pollutant Emissions in a Cold Climate Based on the Example of a Service Building Located in Bialystok. Energies, 15, 9111, doi:10.3390/en15239111.
- [25] Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text with EEA Relevance).
- [26] https://www.klarstein.pl/Grzejniki/Grzejniki-na-podczerwien/Obrazowe-grzejniki-podczerwieni/.
- [27] Moskwa Bęczkowska, D. & Moskwa, A. (2022). Renewable Energy Sources in the Processes of Thermal Modernization of Buildings – Selected Aspects in Poland. Energies, 15, doi:10.3390/en15134613.
- [28] Baborska Narożny, M. (2020) Węglem i Nie Węglem : Ogrzewanie Kamienic : Perspektywa Mieszkańców i Scenariusze Zmian : Rzeczywiste Koszty, Zużycie Energii i Warunki Korzystania z Różnych Systemów Ogrzewania, Oficyna Wydawnicza Politechniki Wrocławskiej.
- [29] Lis, A. & Spodyniuk, N. (2019). The Quality of the Microclimate in Educational Buildings Subjected to Thermal Modernization. E3S Web Conference, 100, doi:10.1051/e3sconf/201910000048.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d61016e-4d1c-4a00-8d34-383a23f56092