Identyfikatory
Warianty tytułu
Conception of the optoelectronic temperature measurement system for underground coal gasification process
Języki publikacji
Abstrakty
W artykule, przedstawiono koncepcję optoelektronicznego systemu pomiarowego do wyznaczania temperatury w procesie podziemnego zgazowania węgla. Składa się on z dwóch części: specjalnie zaprojektowanego na potrzeby procesu podziemnego zgazowania węgla, optycznego czujnika temperatury oraz jednostki centralnej, odpowiedzialnej za rejestrację, przetwarzanie, wizualizację i archiwizację danych pomiarowych. Architektura systemu zakłada wykorzystanie hybrydy dwóch środowisk programistycznych: obiektowego języka programowania Python i środowiska pracującego w oparciu o wirtualne maszyny - LabVIEW.
This paper presents a concept of optoelectronic system to measure the temperature in the underground coal gasification reactor. The underground coal gasification process is utilized to obtain a gaseous product from coal in natural coal seem, in situ. This product can be use in different ways in chemical and energetic industry [1-3]. The key parameter affecting a composition of the gas is temperature [4, 5]. However, there is a problem with continuous temperature measurement inside underground coal gasification reactor due to lack of proper measurement devices. Therefore authors of this article are trying to construct an optical sensor for high temperature measurement [9] connected with special designed software. This monitoring and control system is divided into two parts (Fig. 1): an optical sensor and a CPU that performs processing, visualization and archiving of data. The communication between CPU and sensor is performed by driver 841 (section 2.2.1). The system architecture involves use of hybrid of two programming environments (section 2.2.3): object-oriented programming language Python and an environment based on a virtual machine – LabVIEW. This combination allow to effectively process and visualization measurement data. Furthermore there will be also design a special database for archiving data (Fig. 4). The developed sensor and software make possible to measure the temperature in the reactor of underground coal gasification in a non-contact way, utilizing the thermal radiation low and hybrid of two programming language.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1166--1169
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Główny Instytut Górnictwa, Interdyscyplinarne Studia Doktoranckie w zakresie Czystych Technologii Węglowych, Plac Gwarków 1, 40-166 Katowice
autor
- Główny Instytut Górnictwa, Zakład Akustyki Technicznej i Techniki Laserowej, Plac Gwarków 1, 40-166 Katowice
autor
- Główny Instytut Górnictwa, Interdyscyplinarne Studia Doktoranckie w zakresie Czystych Technologii Węglowych, Plac Gwarków 1, 40-166 Katowice
Bibliografia
- [1] Stańczyk K.: Czyste technologie użytkowania węgla. Katowice, Główny Instytut Górnictwa, 2008.
- [2] Tomeczek J.: Zgazowanie węgla.Wyd. Politechniki Śląskiej, Gliwice, 1991.
- [3] Palarski J.: Pozyskiwanie metodami niekonwencjonalnymi energii z pozabilansowych pokładów węgla z uwzględnieniem ograniczenia emisji CO2. Górnictwo i Geologia, Tom 5, Zeszyt 1, s. 103-121, 2010.
- [4] Bhutto A. i inni: Underground coal gasification: From Fundamentals to applications. Progress in Energy and Combustion Science Vol. 39, p. 189-214, 2013.
- [5] Taba L. i inni: The effect of temperature on various parameters in coal, biomass and CO-gasification: A revuew. Renewable and Sustainable Energy Reviews Vol. 16, p. 5584-5596, 2012.
- [6] Friedmann S.J. i inni: Prospects for underground coal gasification in carbon-constrained world. Energy Procedia Vol. 1, p. 4551-4557, 2009.
- [7] Creedy D. P. i inni: Review of underground coal gasification technological advancements. Report No. COAL R211, DTI/Pub URN 01/1041, 2001.
- [8] Kačur J. i inni: Remote Monitoring and Control of the UCG Process. 12th International Carpathian Control Conference, 2011.
- [9] Lisiecka E., Passia H., Stańczyk K.: Sposób oraz urządzenie do optycznego pomiaru wysokich temperatur. Zgłoszenie projektu wynalazczego w Urzędzie Patentowym RP o numerze P.403662, 2013.
- [10] Krauß A., Weimar U., Göpel W.: LabViewTM for sensor data acquisition. Trends in analytical chemistry, Vol. 18, No. 5, p. 312-318, 1999.
- [11] Yang B., Li J., Zhang Q.: G Language Based Design of Virtual Experiment Platform for Communication with Measurement and Control; Procedia Engineering, Vol. 29, p. 1549-1553, 2012.
- [12] Morse D. H., Antolaka A. J., Bench G. S., Roberts M. L.: A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 158, No. 1-4, p. 146-152, 1999.
- [13] Lopes J. G., Alegria F. C., Redondo L. M., Rocha J., Alves E.: Mass spectrometry improvement on an high current ion implanter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 269, No. 24, p. 3222-3225, 2011.
- [14] Reitz F. B., Pollack G.H.: Labview virtual instruments for calcium buffer calculations. Computer Methods and Programs in Biomedicine, Vol. 70, No. 1, p. 61-69, 2003.
- [15] Ellis W. S., Jones R. T.: Using LabVIEW to facilitate calibration and verification for respiratory impedance plethysmography; Computer Methods and Programs in Biomedicine, Vol. 36, No. 4, p. 169-175, 1991.
- [16] Wang L., Tan Y., Cui X., Cui H.: The Application of LabVIEW in Data Acquisition System of Solar Absorption Refrigerator; Energy Procedia, Vol. 16, part C, p. 1496-1502, 2012.
- [17] Xinling W., Rongxing G.: Design of Electronic Power Network Frequency Measurement System Based on LabVIEW Virtual Panel; Energy Procedia, Vol. 17, part A, p. 456-461, 2012.
- [18] Song J.: Air-condition Control System of Weaving Workshop Based on LabVIEW. Physics Procedia, Vol. 24, part A, p. 541-545, 2012.
- [19] Ma X., Du F., Fang Ch.: Sensors State Monitoring based on LabVIEW and Wireless Nodes. Procedia Engineering, Vol. 15, p. 2639-2643, 2011.
- [20] Wang X., Ma L., Yang H.: Online Water Monitoring System Based on ZigBee and GPRS. Procedia Engineering, Vol. 15, p. 2680-2684, 2011.
- [21] Michalski L., Eckersdorf K., Kucharski J.: Termometria. Przyrządy i metody. Wyd. Politechniki Łódzkiej, Łódź, 1998.
- [22] Gross L., Amirbekyan A., Fenwick J., Gao L., Mohajeri A., Muhlhaus H.: On lazy evaluation as a tool to optimize the efficiency of large scale numerical simulations in Python. Procedia Computer Science, Vol. 1, No. 1, p. 2145-2153, 2010.
- [23] Chudoba R., Sadílek V., Rypl R., Vořechovský M.: Using Python for scientific computing: Efficient and flexible evaluation of the statistical characteristics of functions with multivariate random inputs. Computer Physics Communications, Vol. 184, No. 2, p. 414-427, 2013.
- [24] Nobumasa Akasaka, Atsuyoshi Akiyama, Sakae Araki i inni: KEKB accelerator control system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 499, No. 1, p. 138-166, 2003.
- [25] Paul D. Adams, Pavel V. Afonine, Gábor Bunkóczi i inni: The Phenix software for automated determination of macromolecular structures. Methods, Vol. 55, No. 1, p. 94-106, 2011.
- [26] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, Alejandro Cosimo: Parallel distributed computing using Python. Advances in Water Resources, Vol. 34, No. 9, p. 1124-1139, 2011.
- [27] Grimaldi D., Marinov M.: Distributed measurement systems. Measurement, Vol. 30, No. 4, p. 279-287, 2001
- [28] Grobbelaar P. J., Reuter H. C. R., Bertrand T. P.: Performance characteristics of a trickle fill in cross- and counter-flow configuration in a wet-cooling tower. Applied Thermal Engineering, Vol. 50, No. 1, January 2013, p. 475-484, 2013.
- [29] SPICE-Spectrometer and Instrument Control Environment; Physica B: Condensed Matter. Volumes 385-386, part 2, November 2006, p. 1336-1339.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d607af9-c2f7-4108-9361-ebf8b8351389