Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The environmental menace presented by olive pomace, a solid residue generated in the course of olive oil production, has been firmly established. Numerous investigations have underscored the efficacy of olive pomace as a soil enhancement. As a result, our examination centres on amplifying its agricultural advantages by means of composting and amalgamating it with other refuse materials. This strategy is designed to alleviate the environmental repercussions of olive pomace and trim down restoration expenses, thereby contributing to the transition toward a circular economy. Combinations for composting, comprising 15% to 50% olive pomace serving as a carbon input and 50% to 85% poultry manure as a nitrogen source, successfully underwent a 120-day composting procedure in barrels. The aim is to juxtapose the physic-chemical and microbiological traits of the composted olive pomace (Gr) and poultry manure (F), along with their amalgamations. This scrutiny endeavours to ascertain which treatment proves more efficacious as a plant fertilizer and soil amendment. The investigation also assesses the feasibility of reusing these two waste substances and gauges the maturity of the resultant compost. Throughout the composting progression, diverse microbiological and physic-chemical parameters like temperature, pH, electrical conductivity (EC), moisture levels, organic matter, and the evolution of the C/N ratio were systematically observed. The initial stages of the treatment disclosed heightened microbial activity in the blends, accompanied by a subsequent reduction in pathogen content towards the culmination of the composting course. The inquiry deduces that employing composts derived from olive pomace and poultry manure as sustainable substitutes for chemical fertilizers exemplifies the viability and potential for ecologically sound agricultural practices.
Wydawca
Rocznik
Tom
Strony
11--27
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
- Civil and Environmental Engineering Laboratory (LGCE), Materials Water and Environment team, Higher School of Technology in Salé, MA11060 Salé, Mohammed V University in Rabat, Morocco
autor
- Civil and Environmental Engineering Laboratory (LGCE), Materials Water and Environment team, Higher School of Technology in Salé, MA11060 Salé, Mohammed V University in Rabat, Morocco
autor
- Civil and Environmental Engineering Laboratory (LGCE), Materials Water and Environment team, Higher School of Technology in Salé, MA11060 Salé, Mohammed V University in Rabat, Morocco
autor
- Civil and Environmental Engineering Laboratory (LGCE), Materials Water and Environment team, Higher School of Technology in Salé, MA11060 Salé, Mohammed V University in Rabat, Morocco
autor
- Civil and Environmental Engineering Laboratory (LGCE), Materials Water and Environment team, Higher School of Technology in Salé, MA11060 Salé, Mohammed V University in Rabat, Morocco
autor
- INRA, Regional Centre for Agricultural Research in Rabat, Research Unit on Environment and Natural Resource Conservation, MA10112 Rabat, Morocco
Bibliografia
- 1. Abdelhamid, M. T., Horiuchi, T., & Oba, S. 2004. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresource technology, 93(2), 183-189. https://doi.org/10.1016/j.biortech.2003.10.012
- 2. Ameziane, H., Nounah, A., Khamar, M., & Zouahri, A. 2019. Use of olive pomace as an amendment to improve physico-chemical parameters of soil fertility. https://doi.org/10.15159/ar.19.212
- 3. Ameziane, H., Nounah, A., Khamar, M., & Zouahri, A. 2020. Composting olive pomace: evolution of organic matter and compost quality. Agronomy Research, 18(1), 5–17. https://doi.org/10.15159/ ar.20.004
- 4. Bargougui, L., Guergueb, Z., Chaieb, M., & Mekki, A. 2020. Co-composting of olive industry wastes with poultry manure and evaluation of the obtained compost maturity. Waste and Biomass Valorization, 11(11), 6235–6247. https://doi.org/10.1007/ s12649-019-00901-9
- 5. Bernal, M P, Alburquerque, J.A. & Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100, 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027
- 6. Bower C.A., Reitemeier R.F. & Fireman, M., 1952: Exchangeable cation analysis of saline and alkali soils. Soil Sci., 73, 251–261.
- 7. Brinton, W.F., Droffner, M.W., 1994. Microbial approaches to characterization of composting process. Compos. Sci. Util. 2, 12–17.
- 8. Chen, J. 1999. Characteristic and applications of domestic animal wastes. In: Animal Waste Products Quality and Treatment Alternatives Manual, Soil Survey and Testing Center. National Chung Hsing University, Taiwan. 15–22.
- 9. Chennaoui, M., Salama, Y., Makan, A., & Mountadar, M. 2016. Agricultural valorization of compost produced from tank composting of municipal waste. European Scientific Journal, ESJ, 12(35), 247. (in French).
- 10. Dabin B., 1970. Analysis of organic matter in soils. Laboratory of soil chemistry and applied pedology. ORSTOM, multi printed, 17 p. (in French).
- 11. Del Buono, D., Said-Pullicino, D., Proietti, P., Nasini, L. & Gigliotti, G. 2011. Utilization of olive husks as plant growing substrates: phytotoxicity and plant biochemical responses. Compost Sci. Util. 19, 52–60.
- 12. Doughmi, A., Benradi, F., Cherkaoui. E., Khamar, M., Nounah, A., & Zouahri, A. 2020. Fertilizing power evaluation of different mixtures of oeganic household wastes and olive pomace. Agronomy Research, 20(1), 5–17. https://doi.org/10.15159/ AR.22.049
- 13. El Kafz, G., Cherkaoui, E., Benradi, F., Khamar, M., Nounah, A., & Soukayna, A. 2023. Study of the phytotoxicity of olive mill wastewater on germination and vegetative growth–case of tomato (Solanum lycopersicum L.). Ecological Engineering & Environmental Technology, 24. https://doi.org/10.12912/27197050/165817
- 14. Elasri, O., & Afilal, M. E. 2014. Study a risk of contamination Moroccan waters by chickens droppings. Int J Innov Appl Stud, 7(2), 593. (in French).
- 15. Girard Michel-Claude, Christian Walter, Jean-Claude Rémy, Jacques Berthelin, Jean-Louis Morel 2005. Soils and Environment, 2nd edition, Editions DUNOD, p 816. (in French).
- 16. Godden, B. 1986. Study of the composting process of cattle manure. Doctoral thesis in Agronomic Sciences, UniversitéLibre de Bruxelles. Microbiology laboratory, 136 pp. (in Frensh).
- 17. Gómez-brandon, M., Lazcano, C. & Domínguez, J. 2008. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere, 70, 436-444. https://doi.org/10.1016/j.chemosphere.2007.06.065
- 18. Guene O. 2002. Integrated traditional composting within domestic solid waste management. Proceedings of International Symposium on Environmental Pollution Control and Waste Management, Tunisia, 349-356.
- 19. Guerra-Rodríguez, E., Alonso, J., Melgar, M. J., & Vázquez, M. 2006. Evaluation of heavy metal contents in co-composts of poultry manure with barley wastes or chestnut burr/leaf litter. Chemosphere,65(10), 1801-1805. https://doi.org/10.1016/j.chemosphere.2006.04.023
- 20. Guiraud, 1998. Food microbiology, Microbiological analysis techniques, Ed, Dunod. Paris, 625 pp. (in French).
- 21. Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., & Mechichi, T. 2012. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677-682. https://doi.org/10.1016/j.chemosphere.2012.03.053
- 22. Hachicha, S., Sellami, F., Cegarra, J., Hachicha, R., Drira, N., Medhioub, K., & Ammar, E. 2009. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure - Physico-chemical characterization of the processed organic matter. Journal of Hazardous Materials, 162(1), 402-409. https://doi.org/10.1016/j. jhazmat.2008.05.053
- 23. Haroon, B., Abbasi, A. M., Faridullah, An, P., Pervez, A., & Irshad, M. 2018. Chemical characterization of cow manure and poultry manure after composting with privet and cypress residues. Communications in Soil Science and Plant Analysis, 49(22), 2854-2866. https://doi.org/10.1080/00103624.2018.1546873
- 24. Hassen A., Belguith K., Jedidi N., Cherif A., Cherif M., Boudabous A., 2001. Microbial characterization during composting of municipal solid waste. Bioressource Technology, 80, 217-225. https://doi. org/10.1016/S0960-8524(01)00065-7
- 25. Hay, J.C., 1996. Pathogen destruction and bio-solids composting Biocycle, J. Waste Recycl. 46, 67–76.
- 26. Hayes, W.A. 1968. Microbiological changes in composting wheat strawhorse manure mixtures. Mushroom Sci. 7, 173-186.
- 27. Hirai, M., Chanyasak, V. & Kubota, H. 1983. A standard measurement for compost maturity. Biocycl, 24, 54-56.
- 28. Houot S., Cambier P., Deschamps M., Benoit P., Bodineau G., Nicolardot B., Morel C., Lineres M., Le Bissonnais Y., Steinberg C., Leyval C., Beguiristain T., Capowiez Y., Poitrenaud M., Lhoutellier C., Francou C., Brochier V., Annabi M., Lebeau T. 2009. Composting and recovery by agriculture of urban waste. Agronomic Innovations, INRAE, 5, 69-81. (in French).
- 29. Huang, G.F., Fang, M., Wu, Q.T., Zhou, L.X., Liao, X.D., & Wong, J.W.C. 2001. Co-composting of pig manure with leaves. Environmental technology, 22(10), 1203-1212. https://doi.org/10.1080/09593332208618207
- 30. ISO 11265. Soil quality - Determination of the specific electrical conductivity. October 1994. (In Frensh).
- 31. Jemali B., Soudi B., Lhadi E.K. 1996. Control of composting parameters and assessment of the quality of household waste compost in the Wilaya of Rabat-Salé. Moroccan Review of Agronomic and Veterinary Sciences, 16(2). (in French).
- 32. Keener, H.M., Dick, W.A. & Hoitink, H.A.J. 2000. Composting and beneficial utilization of composted byproduct materials. In: Dick, W.A. (Ed.), Land application of agricultural, industrial, and municipal by-products. Soil Science Society of America Inc., Madison, pp. 315-341. https://doi.org/10.2136/sssabookser6.c10
- 33. Lakhtib, I., Ihihi, A., Rouda, F., Bahloul, A., Himmi, B., & Kitane, S. 2014. Study and valorization of Dovyalis caffra seeds.Asian Journal of Engineering and Technology, 2(6).
- 34. Lhadi E.K., Tazi H., Aylaj M., Genevini P.L. and Adani F., 2006. Organic matter evolution during co-composting the organic fraction of municipal waste and poultry manure. Bioressource Technology, 97, 2117-2123. https://doi.org/10.1016/j.biortech.2005.09.012
- 35. Lhadi E.K., Tazi H., Aylaj M., Tambone F. & Adani F. 2004. Co-composting separated MSW and poultry manure in Morocco. Compost Science and Utilization, 12(2),137-144.
- 36. Lin, C. 2008. A negative-pressure aeration system for composting food wastes. Biores Technol, 99, 7651-7656. https://doi.org/10.1016/j. biortech.2008.01.078
- 37. Mahimairaja, S., Bolan, N.S., Hedley, M.J., Macgregor, A.N., 1994. Losses and transformation of nitrogen during composting of poultry manure with different amendments: and incubation experiment. Biores. Technol. 47, 265-273. https://doi.org/10.1016/0960-8524(94)90190-2
- 38. Manu M. K., Kumar R, Garg A. 2017. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresource Technology, 234, 167- 177. https://doi.org/10.1016/j.biortech.2017.03.023
- 39. Manu, M. K., Kumar, R., & Garg, A. 2016. Drum composting of food waste: a kinetic study. Procedia Environmental Sciences, 35, 456-463. https://doi.org/10.1016/j.proenv.2016.07.029
- 40. Mennane, Z. ; Tada, S. ; Aki, I. ; Faid, M. ; Hassani, S. ; Salmaoui, S. 2010. Physico-chemical and microbiological characterization of the olive residue of 26 traditional oil mills in Beni Mellal (Morroco). Les technologies de laboratoire, 5, 4-9.
- 41. Ministry of Agriculture, Maritime Fisheries, Rural Development and Waters and Forests. 2012. Situation of Moroccan Agriculture, in: Local Products: An Action Strategy Along the Value Chain. Morocco, pp. 169-170. (In French).
- 42. Ministry of Agriculture, Maritime Fisheries, Rural Development, Waters and Forests, 2022.
- 43. Morel, J. L., Guckert, A., Nicolardot, B., Benistant, D., Catroux, G. and Germon, .J.C. 1986. Study of the evolution of the physico-chemical characteristics and the biological stability of household waste during composting. Agronomy, 6, 693–701. (in French).
- 44. Mustin, M. 1987. Compost: organic matter management. F. Dubusc Eds., Paris, 954 p. (in French).
- 45. Nefzaoui A. 1985. Valuation of lignocellulosic residues in the diet of ruminants by treatment with alkali, Application to pomace oil, Catholic University of Leuven, p: 345.
- 46. NF V 08-052:1997, Food microbiology-Detection of Salmonella-Routine method. 24 p. (in French).
- 47. NM 08.0.123. 2004. Food microbiology: Enumeration of yeasts and molds by colony count at 25°C; Moroccan Industrial Standardization Service. 6 p. (in French).
- 48. Oguntade, O. A., Olagbenro, T. S., Odusanya, O. A., Olagunju, S. O., Adewusi, K. M., & Adegoke, A. T. 2019. Assessment of composted kitchen waste and poultry manure amendments on growth, yield and heavy metal uptake by Jute mallow Corchorus olitorius Linn. International Journal of Recycling of Organic Waste in Agriculture, 8(2), 187-195. https://doi.org/10.1007/s40093-018-0232-8
- 49. Ojo, A. O., Taiwo, L. B., Adediran, J. A., Oyedele, A. O., Fademi, I., & Uthman, A. C. O. 2018. Physical, Chemical and Biological Properties of an Accelerated Cassava Based Compost Prepared Using Different Ratios of Cassava Peels and Poultry Manure. Communications in Soil Science and Plant Analysis, 49(14), 1774-1786. https://doi.org/10.1080/00103624.2018.1474914
- 50. Olsen, S. R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate US Department of Agriculture. (No. 939).
- 51. Paredes, C., Cegarra, J., Roig, A., Sanchez-Monedero, M.A. & Bernal, M.P. 1999. Characterisation of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresource Technol. 67, 111-115. https://doi.org/10.1016/ S0960-8524(98)00106-0
- 52. Peters, S., Schwieger, S.K.F. & Tebbe, C.C. 2000. Succession of microbial communities during hot composting as detected by pcrsingle-stran-conformation polymorphism-based genetic profiles of small-subunit rrna genes. Appl Environ Microbiol, 66, 930–936. https://doi.org/10.1128/AEM.66.3.930-936.2000
- 53. Petersen SO, Henriksen K, Mortensen GK, Krogh PH, Brandt KK, Sorensen J, Madsen T, Petersen J, Gron C. 2003. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Tillage Res. 72, 139-152. https://doi.org/10.1016/S0167-1987(03)00084-9
- 54. Pinta, M. 1979. Atomic absorption spectrometry. Application to chemical analysis. 387 pp. (in Frensh).
- 55. Quiroga G, Castrillón L, Fernández-Nava Y, Marañón E. 2010. Physico-chemical analysis and calorific values of poultry manure. Waste Manag. 30, 880-884. https://doi.org/10.1016/j.wasman.2009.12.016
- 56. Raviv, M., Medina, S., & Shamir, Y. 1999. Cocomposting-a method to improve results of poultry manure composting. Compost Science & Utilization, 7(2), 70-73. https://doi.org/10.1080/106565 7X.1999.10701966
- 57. Rodier J., Legube B., Merlet N. 2009. Water analysis. 9 th (Edn.), Dunod, Paris, 1526 pp. (in French).
- 58. Roldan, A., Salinas-Garcia, J.R., Alguacil, M.M., Diaz, E., Caravaca, F., 2005. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma, 129, 178-185. https://doi.org/10.1016/j.geoderma.2004.12.042
- 59. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K. & Swings, J. 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94, 127-137. https://doi.org/10.1046/j.1365-2672.2003.01800.x
- 60. Soumaré, M., Demeyer, A. & Tack, F. 2002. Chemical characteristics of malian and belgian solid waste composts. Biores Technol, 81, 97-101. https://doi.org/10.1016/S0960-8524(01)00125-0
- 61. Tortosa, G., Alburquerque, J.A., Ait-Baddi, G. & Cegarra, J. 2012. The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (‘alperujo’). Journal of Cleaner Production, 26, 48-55. https://doi.org/10.1016/j.jclepro.2011.12.008
- 62. Walker, D. J., & Bernal, M. P. 2008. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource technology, 99(2), 396-403. https://doi.org/10.1016/j.biortech.2006.12.006
- 63. Yay, A. S. E., Oral, H. V., Onay, T. T., & Yenigün, O. 2012. A study on olive oil mill wastewater management in Turkey: A questionnaire and experimental approach. Resources, conservation and recycling, 60, 64-71.https://doi.org/10.1016/j.resconrec.2011.11.009
- 64. Zhang, L., Sun, X., Tian, Y., & Gong, X. 2013. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresource Technology, 131, 68-75. https://doi.org/10.1016/j.biortech.2012.10.059
- 65. Znaidi A. 2002. Study and evaluation of the composting of different types of organic materials and the effects of organic compost juices on plant diseases. Master of Science Degree n°286. Bari: Mediterranean Organic Agriculture, CIHEAM Mediterranean Agronomic Institute, 94 pp. (in Frensh).
- 66. Zucconi, F. & De Bertoldi, M. 1987. Compost specifications for the production and characterization of compost from municipal solid waste. In: De Bertoldi, M., Ferranti, M.P., L′Hermite, M.P. and Zucconi, F., (Eds.), Compost: Production, Quality and Use, Elsevier, London, 276-295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d5cbb80-1f6a-4daa-a626-7ae18f63a696