PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of annealing parameters on phase, structure and thermochromic properties of VO2 (M) derived from nanostructured VO2(B)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synthesis of thermochromic VO2 (M) was successfully done by annealing hydrothermally-prepared VO2 (B) at different temperatures and times. Conversion of the metastable VO2 (B) to the thermochromic VO2 polymorph was studied using thermogravimetric analyzer (TGA) under N2 atmosphere. Moreover, the phase and morphology of the synthesized samples were studied using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Accordingly, the XRD scans of all the annealed samples exhibited the presence of monoclinic VO2 (M), while the FE-SEM images of the samples showed the formation of nanorods and nanospheres, particularly those heated at high temperatures (650 °C and 700 °C). Meanwhile, differential scanning calorimetry (DSC) was used to measure the phase transition temperature (tc), hysteresis, and enthalpy of the prepared VO2. Based on these results, all samples displayed a tc of about 66 °C. However, the hysteresis was high for the samples annealed at lower temperatures (550 °C and 600 °C), while the enthalpy was very low for samples heated at lower annealing time (1.5 h and 1 h). These findings showed that crystallinity and nanostructure formation affected the thermochromic properties of the samples. In particular, the sample annealed at 650 °C showed better crystallinity and improved thermochromic behavior.
Wydawca
Rocznik
Strony
661--666
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Physics Department, Mindanao State University – Main Campus, Marawi City, 9700, Philippines
  • Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • School of Fundamental Science, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu, Malaysia
autor
  • Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Bibliografia
  • [1] MOTT N.F., Metal-Insulator Transitions, 2nd Ed., Taylor & Francis Ltd., London, 1990.
  • [2] MORIN F., Phys. Rev. Lett., 3 (1959), 34.
  • [3] EYERT V., Ann. Phys.-Berlin, 11 (2002), 650.
  • [4] KIRI P., HYETT G., BINIONS R., Adv. Mater. Lett., 1 (2010), 86.
  • [5] CAVALLERI A., TOTH C.S., SIDERS C.W., SQUIER J.A., RAKSI F., FORGET P., KIEFFER J.C., Phys. Rev. Lett., 87 (2001), 237401.
  • [6] GAO Y., LOU H., ZHANG Z., KANG L., CHEN Z., DU J., KANEHIRA M., CAO C., Nano Energy, 1 (2012), 221.
  • [7] GOODENOUGH J., J. Solid State Chem., 3 (1971), 490.
  • [8] LIANG J., LI W., LIU J., HU M., Mater. Lett., 184 (2016), 92.
  • [9] MJEJRI I., ETTEYEB N., SEDIRI F., Mater. Res. Bull., 60 (2014), 97.
  • [10] LIANG X., GAO G., WU G., YANG H., Electrochim. Acta, 188 (2016), 625.
  • [11] VELICHKO A., PERGAMENT A., PUTROLAYNEN V., BEREZINA O., STEFANOVICH G., Mater. Sci. Semicon.Proc., 29 (2015), 315.
  • [12] KAMALISARVESTANI M., SAIDUR R., MEKHILEF S., JAVADI F., Renew. Sustain. Energy Rev., 26 (2013), 353.
  • [13] CHEN Z., GAO Y., KANG L., DU J., ZHANG Z., LUO H., MIAO H., TAN G., Sol. Energ. Mater. Sol. C., 95 (2011), 2677.
  • [14] SEYFOURI M., BINIONS R., Sol. Energ. Mater. Sol. C., 159 (2017), 52.
  • [15] ZHANG Y., HUANG Y., ZHANG J., WU W., NIU F., ZHONG Y., LIU X., LIU X., HUANG C., Mater. Res.Bull., 47 (2012), 1978.
  • [16] JI S., ZHANG F., JIN P., J. Solid State Chem., 184 (2011), 2285.
  • [17] ALIE D., GEDVILAS L., WANG Z., TENENT R., ENGTRAKULC., YAN Y., SHAHEEN S., DILLON A., BAN C., J. Solid State Chem., 212 (2014), 237.
  • [18] CHEN R., MIAO L., LIU C., ZHOU J., CHENG H.,ASAKA T., IWAMOTO Y., TANEMURA S., Sci. Rep.- UK, 5 (2015), 14087.
  • [19] SON J., WEI J., COBDEN D., CAO G., XIA Y., Chem. Mater., 22 (2010), 3043.
  • [20] DAI L., CAO C., GAO Y., LUO H., Sol. Energ. Mater. Sol. C., 95 (2011), 712.
  • [21] YIN D., XU N., ZHANG J., ZHENG X., J. Phys. D: App.Phys., 29 (1996), 1051.
  • [22] XU H. F., LIU Y., WEI N., JIN S. W., Optik, 125 (2014), 6078.
  • [23] ZHANG K.F., BAO S.J., LIU X., SHI J., SU Z.X., LI H.L., Mater. Res. Bull., 41 (2006), 1985.
  • [24] LEROUX C.H., NIHOUL G., TENDELOO G. V., Phys. Rev. B, 57 (1998), 5111.
  • [25] ZHANG C., CHENG J., ZHANG J., YANG X., Int. J. Electrochem. Sci., 10 (2015), 6014.
  • [26] MJEJRI I., ETTEYEB N., SEDIRI F., Ceram. Int., 40 (2014), 1387.
  • [27] JI S., ZHAO Y., ZHANG F., JIN P., J. Cryst. Growth, 312 (2010), 282.
  • [28] LI H.Y., QIU X., DONG M., LI X., ZHANG Y., XIE B., Ceram. Int., 41 (2015), 13967.
  • [29] ZHANG Y., Mater. Sci.-Poland, 34 (2016), 169.
  • [30] SOLTANE L., SEDIRI F., Mater. Res. Bull., 53 (2014), 79.
  • [31] VALMALETTE J.C., GAVARRI J.R., Mater. Sci. Eng. B, 54 (1998), 168.
  • [32] CHEN Y., ZHANG S., KE F., KO C., LEE S., LIU K., CHEN B., AGER J., JEANLOZ R., EYERT V., WU J., Nano Lett., 17 (2017), 2512.
  • [33] QI J., NIU C., Energy Procedia, 17 (2012), 1953.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d59692f-faae-427a-bc1d-6794e333dbd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.