PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical approach to design 3D scaffolds for the 3D printable bone implant

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created. Using the finite element analysis, a static compression test was performed to assess the effective Young modulus of each tested sample. Also, two important metrics of each sample were assessed: relative density and surface area. Each new designed 3D scaffold sample was analyzed by considering two types of material properties: metal alloy properties (Ti-6Al-4V) and ABS polymer properties. Numerical analysis results of this study confirm that 3D scaffold used to design a periodic structure, either based on interconnected beams (A, B, C, D, E and F units) or made by removing regular shapes from base solid cubes (G, H, I units), can be refined to obtain mechanical properties similar to the ones of trabecular bone tissue. Experimental validation was performed on seven scaffolds (A, B, C, D, E, F and H units) printed from ABS material without any support materials by using Fused Deposition Modeling (FMD) technology. Results of experimental Young modulus of each printed scaffold are also presented and discussed.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, str. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • [1] Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J Biomater Sci Polym Ed 2016;27(11):1139–54.
  • [2] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998;20:92–102.
  • [3] Ahmed K, Greene RJ, Aston W, Briggs T, Pendegrass C, Moazen M, et al. Experimental validation of an ITAP numerical model and the effect of implant stem stiffness on bone strain energy. Ann Biomed Eng 2020;48:1382–95.
  • [4] Jetté B, Brailovski V, Simoneau C, Dumas M, Terriault P. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. J Mech Behav Biomed Mater 2018;77:539–50.
  • [5] Jetté B, Brailovski V, Dumas M, Simoneau C, Terriault P. Femoral stem incorporating a diamond cubic lattice structure: design, manufacture and testing. J Mech Behav Biomed Mater 2018;77:58–72.
  • [6] Jia D, Li F, Zhang C, Liu K, Zhang Y. Design and simulation analysis of Lattice bone plate based on finite element method, Mech Adv Mater Struct 2019;1665759.
  • [7] Chen WM, Xie YM, Imbalzano G, Shen J, Xu S, Lee SJ, et al. Lattice Ti structures with low rigidity but compatible mechanical strength: design of implant materials for trabecular bone. Int J Precis Eng Manuf 2016;17:793–9.
  • [8] Jamshidinia M, Wang L, Tong W, Kovacevic R. The biocompatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting (EBM). J Mater Process Technol 2014;8:1728–39.
  • [9] von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part II. Research on implant osseointegration: material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac Surg 2014;18(4):355–72.
  • [10] Mahmoud D, Elbestawi MA. Lattice structures and functionally graded materials applications in Additive Manufacturing of orthopedic implants: a Review. J Manuf Mater Process 2017;1(2):13.
  • [11] Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C Mater Biol Appl 2014;1 (38):1–10.
  • [12] Méhes E, Biri-Kovács B, Isai DG, Gulyás M, Nyitray L, Czirók A. Matrigel patterning reflects multicellular contractility. PLoS Comput Biol 2019;25(15) e1007431.
  • [13] Kadir MRA, Syahrom A, Ochsner A. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone. Med Biol Eng Comput 2010;48:497–505.
  • [14] Doblare M, Garcia JM, Gomez MJ. Modelling bone tissue fracture a healing: a review. Eng Fract Mech 2004;71: 1809–40.
  • [15] Yoo D. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds. Med Eng Phys 2012;32:762–76.
  • [16] Yang N, Gao L, Zhou K. Simple method to generate and fabricate stochastic porous scaffolds. Mater Sci Eng 2015;56:444–50.
  • [17] Yang N, Tian Y, Zhang D. Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering. Med Eng Phys 2015;37:1037–46.
  • [18] Pan C, Han Y, Ku J. Design and optimization of lattice structures: a review. Appl Sci 2020;10:6374.
  • [19] Panesar A, Abdi M, Hickman D, Ashcroft I. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing. Addit Manuf 2018;19:81–94.
  • [20] Hoang VN, Tran P, Vu VT, Nguyen-Xuan H. Design of lattice structures with direct multiscale topology optimization. Compos Struct 2020;252 112718.
  • [21] Barba D, Reed RC, Alabort E. Design of metallic lattices for bone implants by additive manufacturing. In: The Minerals, Metals & Materials Society (eds) TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. 2020:745-759.
  • [22] Vastola G, Zhang G, Pei QX, Zhang YW. Modeling the microstructure evolution during additive manufacturing of Ti6Al4V: a comparison between electron beam melting and selective laser melting. JOM 2016;68:1370–5.
  • [23] Wieding J, Souffrant R, Mittermeier W, Bader R. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions. Med Eng Phys 2013;35:422–32.
  • [24] Li G, Wang L, Pan W, Yang F, Jiang W, Wu X, et al. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep 2016;6(1):34075.
  • [25] de la Lastra AA, Hixon KR, Aryan L, Banks AN, Lin AY, Hall AF, et al. Tissue engineering scaffolds fabricated in dissolvable 3D-printed molds for patient-specific craniofacial bone regeneration. J Funct Biomater 2018;9(3):46.
  • [26] Boga JC, Miguel SP, de Melo-Diogo D, Mendonc¸a AG, Louro RO, Correia IJ. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids Surf BBiointerfaces 2018;165(1):207–18.
  • [27] Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35(13):4026–34.
  • [28] Boehm AV, Meininger S, Tesch A, Gbureck U, Mu¨ ller FA. The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers. Materials (Basel) 2018;26(11):192.
  • [29] Nazir A, Abate KM, Kumar A, et al. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int J Adv Manuf Technol 2019;104: 3489–510.
  • [30] Moiduddin K, Al-Ahmari A, Al Kindi M, Nasr ESA, Mohammad A, Ramalingam M. Customized porous implants by additive manufacturing for zygomatic reconstruction. Biocybernetics Biomed Eng 2016;36:719–30.
  • [31] Podshivalov L, Gomes CM, Zocca A, Guenster J, Bar-Yoseph P, Fischer A. Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds. Procedia CIRP 2013;5:247–52.
  • [32] Nazir A, Jeng JW. Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation. Mater Des 2020;186 108349.
  • [33] Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 2015;137(1):0108021–01080215.
  • [34] Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014;3:61–102.
  • [35] Yánez A, Herrera A, Martel O, Monopoli D, Afonso H. Compressive behavior of gyroid lattice structures for human cancellous bone implant applications. Mater Sci Eng 2016;68:445–8.
  • [36] Feng Q, Tang Q, Liu Y, Setchi R, Soe S, Ma S, et al. Quasi-static analysis of mechanical properties of ti6al4v lattice structures manufactured using selective laser melting. Int J Adv Manuf Technol 2018;94:2301–13.
  • [37] Ra HK, Karthik NV, Gong H, Starr TL, Stucker BE. Microstructures and mechanical properties of ti6al4v parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 2013;22:3872–83.
  • [38] Huynh V, Ngo NK, Golden TD. Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications, Review. Int J Biomater 2019 3806504.
  • [39] Cyganik Ł, Binkowski M, Kokot G, Rusin T, Popik P, Bolechała F, et al. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties. J Mech Behav Biomed Mater 2014;36:120–34.
  • [40] Egan PF, Gonella VC, Engensperger M, Ferguson SJ, Shea K. Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLoS One 2017;12(8) e0182902.
  • [41] Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybernetics Biomed Eng 2018;38:158–69.
  • [42] Szymczyk-Ziólkowska P, Labowska MB, Detyna J, Michalak I, Gruber P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics Biomed Eng 2020;40:624–38.
  • [43] Wojnicz W, Wittbrodt E. FEM approach to modeling of an irregular trabecular structure. Shell Structure: Theory and Applications.Vol.4. 1st ed., CRC Press/Balkema;2018, 519-522.
  • [44] Khan SN, Warkhedkar RM, Shyam AK. Analysis of Hounsfield unit of human bones for strength evaluation. Procedia Mater Sci 2014;6:512–9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d4dd395-090c-4e78-86c8-3b68789f2091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.