Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The soils of agricultural lands of Ukraine have different features of use for growing agricultural crops. In particular, under the conditions of homesteads in urbanized areas, the use of soils is observed mainly for monoculture (extensive agriculture). Usually, such soils are used primarily for the cultivation of potatoes and a small amount of vegetable crops: beets, cucumbers, cabbage, tomatoes, carrots, parsley, dill, etc. Organic fertilizers and a small amount of mineral fertilizers are used to fertilize the soils of homestead plots. Polycultures (intensive agriculture) such as: sunflower, winter rapeseed, winter wheat, corn, barley, sugar beet, peas, etc. are grown under the conditions of field crop rotation. With the creation of conditions for obtaining the maximum yield, mainly mineral fertilizers and a small amount of organic fertilizers are used. That is, these features of soil use can be reflected to one degree or another in the level of accumulation of heavy metals and trace elements in them. The content of heavy metals and trace elements in black soil typical medium loamy, sod-podzolic sandy loamy and gray medium loamy soils were investigated for their use in homestead plots and field crop rotation for growing various agricultural crops. A higher content of mercury, lead, cadmium, zinc and copper was found in black soil typical medium loamy, gray forest medium loamy and sod-podzolic sandy loamy soils under the conditions of homesteads compared to the soils of field crop rotations. The highest difference in the content of Pb, Hg, Cd, Zn, and Cu in the soils of homestead plots and field crop rotations was found in sod-podzolic sandy soil.
Czasopismo
Rocznik
Tom
Strony
42--50
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
autor
- Lviv National Environmental University, Volodymyra Velykoho Str. 1, Dublyany, Lviv Region, 30831, Ukraine
- Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
autor
- Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
autor
- Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
autor
- Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
autor
- Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
autor
- Higher Education Institution, Podillia State University, Shevchenko Str. 12, Kamianets-Podilskyi, 32316, Ukraine
autor
- Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
autor
- National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony st. 15, Kyiv, 03041, Ukraine
autor
- National Scientific, Center Institute of Beekeeping named after P.I. Prokopovich, Zabolotnogo 19, Kyiv, 03680, Ukraine
autor
- Lviv National Environmental University, Volodymyra Velykoho Str. 1, Dublyany, Lviv Region, 30831, Ukraine
Bibliografia
- 1. Abou El-Anwar E.A. 2021. Mineralogical and geochemical studies on soils and Nile bottom sediments of Luxor–Aswan area, South Egypt. Bul.l Natl. Res. Cent. 45(1), 1. https://doi.org/10.1186/s42269- 021-00573-3
- 2. Abou El-Anwar. 2019. Assessment of heavy metal pollution in soil and bottom sediment of upper Egypt: Comparison study. Bul.l Natl. Res. Cent., 43(1), 1. https://doi.org/10.1186/s42269-019-0233-4.
- 3. Abu Khatita, Koch R., Bamousa A.O. 2020. Sources identification and contamination assessment of heavy metals in soil of Middle Nile Delta, Egypt. Journal. of Taibah University for Science, 14(1), 750–61. https://doi.org/10.1080/16583655.2020.1771833
- 4. Abuzaid A.S., Jahin H.S., Asaad A.A., Fadl M.E., Abdelrahman M.A.E., Scopa A. 2021. Accumulation of potentially toxic metals in Egyptian alluvial soils, berseem clover (Trifolium alexandrinum L.), and groundwater after long-term wastewater irrigation. Agric, 11(8), 713.
- 5. Belon E., Boisson M., Deportes I.Z., Eglin T.K., Feix I., Bispo A.O., Galsomies L., Leblond S., Guellier C.R. 2014. An inventory of trace elements inputs to French agricultural soils. Science of The Total Environment Journal, 439, 87–95. https://doi.org/10.1016/j.scitotenv.2012.09.011
- 6. Binggan W., Linsheng Ya. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107. https://doi.org/10.1016/j.microc.2009.09.014
- 7. DSTU 4770.1:2007 - DSTU 4770.9:2007. Soil quality. Determination of the content of mobile manganese compounds (zinc, cadmium, iron, cobalt, copper, nickel, chromium, lead) in the soil in a buffered ammonium-acetate extract with pH 4.8 by the method of atomic absorption spectrophotometry. [Effective from 01.01.2009]. K.: Derzhspozhivstandard of Ukraine 2009. 117 (in Ukrainian).
- 8. Dydiv A., Piddubna A., Gucol G., Vradii O., Zhylishchych Y., Titarenko O., Razanova A., Odnosum H., Postoienko D., Kerek S. 2023. Accumulation of lead and cadmium by vegetables at different levels of gray forest soil moistening in the conditions of the Right Bank Forest Steppe of Ukraine. Journal of Ecological Engineering, 24(10), 198–204. https://doi.org/10.12911/22998993/170291
- 9. Emam W.W.M., Soliman K.M. 2021. Geospatial analysis, source identification, contamination status, ecological and health risk assessment of heavy metals in agricultural soils from Qallin city, Egypt. Stochastic Environmental Research and Risk Assessment, 11:1264. https://doi.org/10.1007/s00477-021-02097-8
- 10. Honcharuk I. 2020. Use of wastes of the livestock industry as a possibility for increasing the efficiency of aic and replenishing the energy balance. Visegrad Journal on Bioeconomy and Sustainable Development, 9(1), 9–14. https://doi.org/10.2478/vjbsd-2020-0002
- 11. Hrabak N.H., Topiha I.N., Davydenko V.M., Shevel I.V. 2016. Basics of agriculture and land protection: a study guide. VD Professional, Kyiv (in Ukrainian).
- 12. Huang B., Yuan Z., Li D., Zheng M., Nie X., Liao Y. 2020. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environmental Science Proceedings and Impacts, 22, 1596. https://doi.org/10.1039/D0EM00189A.
- 13. Hussain B., Ashraf M.N., Rahman S.U., Abbas A., Lia J., Farooq M. 2021. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science Total Environment Journal, 754, 142188. https://doi.org/10.1016/j.scitotenv.2020.142188
- 14. Ivanova O.S. 2014. Local heavy metal contamination of residential areas of Brusyliv district. Collection of scientific works of Kharkiv National Pedagogical University named after H.S. Frying pans Series «Biology and valeology», 12, 135–140 (in Ukrainian).
- 15. Zahida K., Bilal Q,, Majid, M., Salman Q. 2014. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi – A multivariate spatio-temporal analysis. Ecological Indicators, 42, 20–31. https://doi.org/10.1016/j.ecolind.2013.07.020
- 16. Khan S., Naushad M., Lima E.C., Zhang S., Shaheen S.M., Rinklebe J. 2019. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review. Journal of Hazardous Materials, 417, 126039. https://doi.org/10.1016/j.jhazmat.2021.126039
- 17. Lisova A.P., Kravchenko S.M. 2020. Fertilizer application system: textbook, Higher School, Kyiv (in Ukrainian).
- 18. Liu N., Huang X., Sun L., Li S., Chen Y., Cao X., Wang W., Dai J., Rinnan R. 2020. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. Chemosphere, 241, 125065. https://doi.org/10.1016/j.chemosphere.2019.125065
- 19. Loganathan P., Hedley M.J., Gregg P.E.H., Currie L.D. 2017. Effect of phosphate fertiliser type on the accumulation and plant availability of cadmium in grassland soils. Nutrient Cycling Agroecosystems, 46, 169–178. https://doi.org/10.1007/BF00420551
- 20. Lugon-Moulin N., Ryan L., Donini P., Rossi L. 2016. Cadmium content of phosphate fertilizers used for tobacco production. Agronomy for Sustainable Development, 26, 151–155. https://doi.org/10.1051/agro:2006010
- 21. Luo L., Ma Y., Zhang S., Wei D., Zhu Y. 2019. An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90, 2524–2530. https://doi.org/10.1016/j.jenvman.2019.01.011
- 22. Mu D., Zheng S., Lin D., Xu Y., Dong R., Pei P., Sun Y. 2023. Derivation and validation of soil cadmium thresholds for the safe farmland production of vegetables in high geological background area. Science Total Environment Journal, 873, 162171. https://doi.org/10.1016/j.scitotenv.2023.162171
- 23. Myslyva T.M., Onoprienko L.O. 2019. Heavy metals in urboedaphatopes and phytocenoses and the territory of Zhytomyr. KHNAU Bulletin, 2, 134–142 (in Ukrainian).
- 24. Myslyva T.M., Trembitskyi V.A., Dovbysh L.L. 2016. Heavy metals in forest-agrarian landscapes of Zhytomyr Polissia. Agrochemistry and soil science, special edition, 260–263 (in Ukrainian).
- 25. Ni R.X., Ma Y.B. 2018. Current inventory and changes of the input/output balance of trace elements in farmland across China. PLoS ONE, 13, 0199460. https://doi.org/10.1371/journal.pone.0199460
- 26. Nicholson F.A., Smith S.R., Alloway B.J., CarltonSmith C., Chambers B.J. 2016. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of The Total Environment Journal, 311, 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6
- 27. Nziguheba G., Smolders E. 2018. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science Total Environment Journal, 390, 53–57. https://doi.org/10.1016/j.scitotenv.2018.09.031
- 28. Peng M., Zhao C., Ma H., Yang Z., Yang K., Liu F., Li K., Yang Z., Tang S.Q., Guo F. 2020. Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. Journal of Geochemical Exploration, 208, 106403. https://doi.org/10.1016/j.gexplo.2019.106403
- 29. Rai P.K., Lee S.S., Zhang M., Tsang Y.F., Kim K.H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International Journal, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067
- 30. Rasanov S.F, Tkachuk O.P. 2017. Intensive chemistry of earth – as a precondition for the pollution of grain production by high-speed metals. Technology of production and processing of livestock products, 1(134), 70–75.
- 31. Razanov S., Husak O., Hnativ P., Dydiv A., Bakhmat O., Stepanchenko V., Pryshchepa A., Shcherbachuk V., Mazurak O. 2023a. The influence of the gray forest soil moisture level on the accumulation of Pb, Cd, Zn, Cu in spring barley grain. Journal of Ecological Engineering, 24(7). 285–292. https://doi.org/10.12911/22998993/164747
- 32. Razanov S., Melnyk V., Symochko L., Dydiv A., Vradii O., Balkovskyi V., Khirivskyi P., Panas N., Lysak H., Koruniak O. 2022. Agroecological assessment of gray forest soils under intensive horticulture. International Journal of Ecosystems and Ecology Science (IJEES), 12(4), 459–464. https://doi.org/10.31407/ijees12.4
- 33. Razanov S., Piddubna A., Gucol G., Symochko L., Kovalova S., Bakhmat, M., Bakhmat O. 2022. Estimation of heavy metals accumulation by vegetables in agroecosystems as one of the main aspects in food security. International Journal of Ecosystems and Ecology Science (IJEES), 12(3), 159–164. https://doi.org/10.31407/ijees12.320
- 34. Razanov S., Tkachuk O., Lebedieva N., Shkatula Yu., Polishchuk M., Melnyk M., Krektun B., Razanova A. 2023b. Phytoremediation of heavy metal contamination by perennial legumes. International Journal of Environmental Studies, 1–7. https://doi.org/10.1080/00207233.2023.2296764
- 35. Riaz M., Kamran M., Rizwan M., Ali S., Parveen A., Malik Z., Wang X. 2021. Cadmium uptake and translocation: Synergetic roles of selenium and silicon in Cd detoxification for the production of low Cd crops: A critical review. Chemosphere, 273, 129690. https://doi.org/10.1016/j.chemosphere.2021.129690
- 36. Romheld V. 2021. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach. Plant Soil, 130, 127–134. https://doi.org/10.1007/BF00011867
- 37. Tiecher T.L., Ceretta C.A., Tiecher T., Ferreira P.A., Nicoloso F.T., Soriani H.H., Rossato L.V., Mimmo T., Cesco S., Lourenzi C.R. 2016. Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicology and Environmental Safety Journal, 129, 109–119. https://doi.org/10.1016/j.ecoenv.2016.03.016
- 38. Wan Y., Huang Q., Wang Q., Ma Y., Su D., Li H. 2020. Ecological risk of copper and zinc and their different bioavailability change in soil-rice system as affected by biowaste application. Ecotoxicology and Environmental Safety Journal, 192, 110301. https://doi.org/10.1016/j.ecoenv.2020.110301
- 39. Wan Y., Huang Q., Wang Q., Yu Y., Su D., Qiao Y., Li H. 2020. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. Journal of Hazardous Materials, 384, 121293. https://doi.org/10.1016/j.jhazmat.2019.121293
- 40. Yu Y., Zhu L., Guo T., Huang Q., Wang Q., Li H. 2018. Risk assessment of cadmium and arsenic in phosphate fertilizer. Journal of Agro-Environment Science, 37, 1326–1331.
- 41. Zhao F.J., Ma Y., Zhu Y.G., Tang Z., McGrath S.P. 2015. Soil contamination in China: Current status and mitigation strategies. Environmental Science and. Technology, 49, 750–759. https://doi.org/10.1021/es5047099
- 42. Zheng S., Wang Q., Yuan Y., Sun W. 2020. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemestry, 316, 126213. https://doi.org/10.1016/j.foodchem.2020.126213
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d493708-d5ec-42e9-ac8a-3c5349ad2ae7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.