PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Compression strength-focused properties of wood composites induced by density

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compression strength-focused properties of wood composites induced by density. The aim of this study was to analyse the contractual compression strength and modulus of elasticity under compression of ten commercially available wood composites of various thickness, density, structure and surface finish. Density and density profiles have also been performed. The tests showed that there is no significant dependence of the compression strength and MOEC on the density of composites.
PL
Właściwości kompozytów drewnopochodnych przy ściskaniu w odniesieniu do gęstości. Celem badań była analiza umownej wytrzymałości na ściskanie i modułu sprężystości przy ściskaniu dziesięciu dostępnych na rynku kompozytów drewnopochodnych o różnej grubości, gęstości, strukturze i wykończeniu powierzchni. Zbadano również gęstość i profile gęstości badanych tworzyw. Badania wykazały, że brak jest istotnej zależności wytrzymałości na ściskanie oraz MOEC od gęstości tworzyw.
Twórcy
  • Department of Technology an Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
Bibliografia
  • 1. ARRIAGA-MARTITEGUI, F., PERAZA-SÁNCHEZ, F., GARCÍA-ESTEBAN, L. (2008). “Characteristic values of the mechanical properties of radiata pine plywood and the derivation of basic values of the layers for a calculation method,” Biosystems Engineering, Academic Press, 99(2), 256–266. DOI: 10.1016/j.biosystemseng.2007.10.004.
  • 2. ATTA-OBENG, E., VIA, B. K., FASINA, O. (2012). “Effect of microcrystalline cellulose, species, and particle size on mechanical and physical properties of particleboard,” in: Wood and Fiber Science, 227–235.
  • 3. AYRILMIS, C., AKBULUT, B., BALKIZ, D., CANDAN, Z. (2010). “Effect of Sanding on Surface Properties of Medium Density Fiberboard”; Utjecaj brušenja na svojstva površine MDF ploče, DRVNA INDUSTRIJA 61 (3) 175-181.
  • 4. BUYUKSARI, U., HIZIROGLU, S., AKKILIC, H., AYRILMIS, N. (2012). “Mechanical and physical properties of medium density fiberboard panels laminated with thermally compressed veneer,” Composites Part B: Engineering, 43(2), 110–114. DOI: 10.1016/j.compositesb.2011.11.040.
  • 5. CAMLIBEL, O., AKGUL, M. (2020). “Mechanical and physical properties of medium density fibreboard with calcite additive”, WOOD RESEARCH 65 (2): 2020 231-244, DOI: /10.37763/wr.1336-4561/65.2.231244.
  • 6. CHIANG, T. C., HAMDAN, S., OSMAN, M. S. (2016). “Effects of density of sago/urea formaldehyde particleboard towards its thermal stability, mechanical and physical properties,” Jurnal Teknologi, Penerbit UTM Press, 78(10), 187–197. DOI: 10.11113/jt.v78.8174.
  • 7. CHOI, C., KOJIMA, E., KIM, K., YAMASAKI, M., SASAKI, Y., KANG, S. (2018). “Analysis of mechanical properties of cross-laminated timber (CLT) with plywood using Korean larch”, BioResources 13(2), 2715-2726., DOI: 10.15376/biores.13.2.2715-2726.
  • 8. DIESTE, A., KRAUSE, A., BOLLUMUS, S., MILITZ, H. (2008). “Physical and mechanical properties of plywood produced with 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU)-modified veneers of Betula sp. and Fagus sylvatica,” Holz als Roh - und Werkstoff, 66(4), 281–287. DOI: 10.1007/s00107-008-0247-3.
  • 9. FERRO, F. S., ICIMOTO, F. H., DE ALMEIDA, D. H., CHRISTOFORO, A. L., LAHR, F. A. R. (2013). “Verification of Test Conditions to Determine the Compression Modulus of Elasticity of Wood,” International Journal of Agriculture and Forestry, 3(2), 66–70. DOI: 10.5923/j.ijaf.20130302.06.
  • 10. JIANG, J., LU, J., ZHOU, Y., ZHAO, Y., ZHAO, L. (2014). “Compression Strength and Modulus of Elasticity Parallel to the Grain of Oak Wood at Ultra-low and High Temperatures,” BioResources, 9(2), 3571–3579. DOI: 10.15376/biores.9.2.3571-3579.
  • 11. KAI, Z., WU, Q., LEE, J. N., HIZIROGLU, S. (2004). “Influence of board density, mat construction, and chip type on performance of particleboard made from eastern redcedar,” Forest Products Journal, 54(9729), 226–232.
  • 12. KAWAI, S., SASAKI, H., NAKAI, M., MAKIJAMA, S., MORITA, S. (1986). “Physical Properties of Low-density Particleboard,” Wood Research, 72, 27–36.
  • 13. KAWASAKI, T., ZHANG, M., KAWAI, S.(1999). “Sandwich panel of veneer-overlaid low-density fibreboard”, Journal of Wood Science volume 45, pages291–298, DOI: 10.1007/BF00833493.
  • 14. KOWALUK, G., JEŻO, A. (2020). “Compression strength and other mechanical properties of particleboards induced by density,” Annals of WULS Forestry and Wood Technology 110:79-91; DOI: 10.5604/01.3001.0014.4413.
  • 15. KRZYSIK, F. (1975). Nauka o drewnie, Państwowe Wydawnictwo Naukowe, Warsaw.
  • 16. LEE, A. W. C. (1983). “Effect of CCA-treating and air-drying on the properties of southern pine lumber and plywood”, WOOD AND FIBER SCIENCE, APRIL 1985, V. 17(2).
  • 17. LENG, W., HUNT, J. F., TAJWIDI, M. (2017). Bending of wet-form particleboard, BioResources.
  • 18. DE MAGISTRIS, F., SALMEN, L. (2004). “Combined shear and compression analysis using the iosipescu device: Analytical and experimental studies of medium density fiberboard,” Wood Science and Technology, 37(6), 509–521. DOI: 10.1007/s00226-003-0217-1.
  • 19. MAKU, T., HAMADA, R. (1955). “Studies on the chipboard. Part 1. Mechanical Properties,” Wood Research, 15, 38–52.
  • 20. MARCH H. W. NORRIS C. B., KUENZI, E. W. (1962). “Buckling of long, thin, plywood cylinders in axial compression”, United States Department of Agriculture Forest Service, Forest Products Laboratory, Rept. No. 1322.
  • 21. MIYAMOTO, K., SUZUKI, S., INAGAKI, T., IWATA, R. (2002). Effects of press closing time on mat consolidation behavior during hot pressing and on linear expansion of particleboard, Journal of Wood Science. DOI: 10.1007/BF00831352.
  • 22. MO, X., HU, J., SUN, X. S., RATTO, J. A. (2001). “Compression and tensile strength of low-density straw-protein particleboard,” Industrial Crops and Products, 14(1), 1–9. DOI: 10.1016/S0926-6690(00)00083-2.
  • 23. MUGE GUNGOR, N., NAMI KARTAL, S., KANTAY, R. (2007). “Technological properties of wingnut (Pterocarya fraxinifolia (LAM.) Spach.) wood and characteristics of plywood from wingnut wood,” Building and Environment, 42(8), 3108–3111. DOI: 10.1016/j.buildenv.2006.10.036.
  • 24. NORRIS C. B., VOSS A. W., MCKINNON P. F. (1956). “Buckling of flat plywood plates in compression, shear, or combined compression and shear”, Forest Products Laboratory, United States Department of Agriculture Forest Service, Rept. No. 1316-I.
  • 25. NORRIS, C. B., MCKINNON, P. F. (1956). “Compression, tension, and shear tests on yellow-poplar plywood panels of sizes that do not buckle with tests made at various angles to the face grain”, United States Department of Agriculture Forest Service, Forest Products Laboratory Rept. No. 1328.
  • 26. PARK, B.-D., KIM, Y-S., RIEDL B. (2001). “Modification of UF resins with modified nanoclay and highly methylolated melamine (HMM)”, In-situ modifications of low molar ratio urea-formaldehyde resins adhesive, Journal of the Korean Wood Science and Technology 29 (3): 27-35. 2001.
  • 27. PN-EN 310:1994 Wood-based panels. Determination of modulus of elasticity in bending and of bending strength.
  • 28. PN-EN 312:2011 Particleboards. Specifications.
  • 29. PN-EN 323:1999 Wood-based panels. Determination of density.
  • 30. RAYMOND, B. A. (1962). “Plywood Cycles Compression of Douglas Fir in Various Hot-Pressing, Forest Products Research”, FOREST RESEARCH LABORATORY OREGON STATE UNIVERSITY Corvallis, Information Circular 17.
  • 31. RIEGLER, M., WEIGL, M., HARM, M., RATHKE, J., MÜLLER, U. (2012). “Influence of hardwood on the vertical density profile and fracture energy of particleboards,” “Hardwood Science and Technology” The 5th Conference on Hardwood Research and Utilisation in Europe 2012, 3–7.
  • 32. SHI, S. Q., GARDNER, D. J., WANG, J. Z. (1999). “Effect of the addition of polymer fluff to wood furnish on the, Forest Products Journal”, Feb 1999; 49, 2; ProQuest pg. 32-38, SSN: 0015-7473.
  • 33. SACKEY, E. K., SEMPLE, K. E., OH, S.-W., SMITH, G. D. (2008). “Improving core bond strength of particleboard through particle size redistribution,” Wood and Fiber Science, 40(2), 214–224.
  • 34. SUO, S., BOWYER, J. L. (1994). “Simulation modeling of particleboard density profile,” Wood and fiber science, 26(3), 397–411.
  • 35. SYCZ, K., KOWALUK, G. (2019). “The influence of structure on selected properties of a lignocellulosic composite.” Ann. WULS–SGGW, For. and Wood Technol. 106, 120-127.
  • 36. TENORIO, C., MOYA, R., MUNOZ, F. (2011). “Comparative study on physical and mechanical properties of laminated veneer lumber and plywood panels made of wood from fast-growing Gmelina arborea trees,” Journal of Wood Science, 57(2), 134–139. DOI: 10.1007/s10086-010-1149-7.
  • 37. VITAL, B., LEHMANN, W., BOONE, R. (1994). “Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard”, Forest Products Journal, 40(3), 37-45. DOI: 10.15376/biores.12.3.4986-5000.
  • 38. XAVIER, J., DE JESUS, A. M. P., MORAIS, J. J. L., PINTO, J. M. T. (2012). “Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain,” Construction and Building Materials, Elsevier Ltd, 26(1), 207–215. DOI: 1.
  • 39. XING, C., ZHANG, S. Y., DENG, J., RIEDL, B., CLOUTIER, A. (2006). “Medium-density fiberboard performance as affected by wood fiber acidity, bulk density, and size distribution,” Wood Science and Technology, 40(8), 637–646. DOI: 10.1007/s00226-006-0076-7.
  • 40. YOSHIHARA H. (2010). “Technical note: characterization of in-plane compressive properties of plywood by IItri and end-loading compression tests”, Wood and Fiber Science, 42(3), 2010, pp. 409-411.
  • 41. YOSHIHARA H. (2010). “Bending Properties of Medium-Density Fiberboard and Plywood Obtained by Compression Bending Test”, Forest Products Journal Vol. 61 (1): 56-63, No. 1, DOI: 10.13073/0015-7473-61.1.560.1016/j.conbuildmat.2011.06.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d471ed2-3820-4245-938c-581d21aa3c93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.