PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A data assimilation approach for estimating strength of steel pipes reinforced with composite sleeves under unsteady pressure-flow conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is twofold: to estimate the unsteady pressure-flow variations in gas transmission pipelines using the ensemblebased data assimilation approach and to analyse the strength of steel tubes reinforced with composite sleeves containing localized part-wall thickness loss caused by corrosion while taking into consideration a safe operating pressure of the pipeline. For a steel thin-walled cylinder containing a partwall metal loss, a flexible wrap of fibreglass as well as carbon glass with epoxy resin are determined. The strength of the repaired pipeline with two kinds of materials for sleeves is investigated taking into consideration the internal pressure at the defect location. For the case study, a section of the Yamal transit pipeline on the Polish territory is selected. The results enable pipeline operators to evaluate the strength of corroded steel pipelines and develop optimal repair activities, which are of vital importance for the maintenance and operation of underground steel networks.
Rocznik
Strony
3--22
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
  • Warsaw University of Technology, Plac Politechniki 1, 00-661 Warszawa, Poland
  • Warsaw University of Technology, Plac Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
  • [1] Bouledroua O., Zelmati D., Hassai M.: Inspections, statistical and reliability assessment study of corroded pipeline. Eng. Fail. Anal. 100(2019), 1–10.
  • [2] Witek M.: Life cycle estimation of high pressure pipeline based on in-line inspection data, Eng. Fail. Anal. 104(2019), 255–272.
  • [3] Witek M.: Gas transmission failure probability estimation and defect repairs activities based on in-line inspection data. Eng. Fail. Anal. 70(2016), 255–272.
  • [4] Siraj T.: Quantification of Uncertainties in Inline Inspection Data for Metal-loss Corrosion on Energy Pipelines and Implications for Reliability Analysis. PhD thesis, University of Western Ontario, London 2018.
  • [5] Witek M., Batura A., Orynyak I., Borodii M.: An integrated risk assessment of onshore gas transmission pipelines based on defect population. Eng. Struct. 173(2018), 150–165.
  • [6] Arulampam S., Maskell S., Gordon N., Clapp T.: A tutorial on particle filters for online non-linear/non-Gaussian Bayesian tracking. IEEE T. Signal Proces. 50(2002), 2, 174.
  • [7] Doucet A.: On sequential Monte Carlo methods for Bayesian filtering. Tech. rep. Tech. Rep., Univ. Cambridge, Depart. Eng., Cambridge 1998.
  • [8] Gordon N., Salmond D., Smith A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F – Radar Signal Process. 140(1993), 2, 107–113.
  • [9] Han Z.Y., Weng W.G.: An integrated quantitative risk analysis method for natural gas pipeline network. J. Loss Prevent. Proc. 23(2010), 428–436.
  • [10] Uilhoorn F.E.: Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines. J. Nat. Gas Sci. Eng. 38(2017), 159–170.
  • [11] Colebrook C.: Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civil Eng. 11(1939), 133–156.
  • [12] Bank R.E., Coughran, Jr. W.M., Fichtner W., Grosse E.H., Rose D.J., Smith R.K.: Transient simulation of silicon devices and circuits. IEEE T. Comput. Aid. D. CAD 4(1985), 4, 436–451.
  • [13] Shampine L., Hosea M.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20(1996), 1–2, 21–37.
  • [14] Uilhoorn F.E.: A comparison of numerical integration schemes for particle filterbased estimation of gas flow dynamics. Phys. Scripta 93(2018), 12.
  • [15] Uilhoorn F.E.: A multiobjective optimization approach to filter tuning applied to coupled hyperbolic PDEs describing gas flow dynamics. Optimal Control Appl. Meth. 40(2019), 4, 750–763.
  • [16] Bickel P., Li B., Bengtsson T.: Sharp failure rates for the bootstrap particle filter in high dimensions. In: IMS Collections, Vol. 3, Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh (B. Clarke, S. Ghosa, Eds.). IMS, Beachwood 2018, 318–329.
  • [17] Snyder C., Bengtsson T., Bickel T., Anderson J.: Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(2008), 4629–4640.
  • [18] Det Norske Veritas: Recommended practice DNV-RP-F101. Corroded pipelines. 2010.
  • [19] Da Costa Mattos H.S., Reis J.M.L, Paim L.M., Silva da M.L., Lopes Jr. R., Perrut V.A.: Failure analysis of corroded pipelines reinforced with composite repair systems. Eng. Fail. Anal. 59(2016), 223–236.
  • [20] Mazurkiewicz Ł., Tomaszewski M., Małachowski J., Sybilski K., Chebakov M., Witek M., Yukhymets P., Dmitrienko R.: Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve. Int. J. Pres. Ves. Pip. 149(2017), 108–119.
  • [21] Orynyak I.V.: Leak and break models of ductile fracture of pressurized pipe with axial defects. In: Proc. 6th Int. Pipeline Conf. (IPC2006), Sept. 25–29, 2006, Calgary, IPC206-10066
  • [22] Uilhoorn F., Witek M.: Influence of unsteady pressure-flow conditions on strength of steel pipelines with volumetric defects reinforced by composite sleeves. In: XIV Research and Development in Power Engineering Conf. (RDPE 2019), Warsaw, Dec. 3–6, 2019.
  • [23] Reis J.M.L., Chaves F.L., Da Costa Mattos H.S.: Tensile behaviour of glass fibre reinforced polyurethane at different strain rates. Mater. Des. 49(2013), 192–196.
  • [24] Alizadeh E., Dehestani M.: Analytical and numerical fracture analysis of pressure vessel containing wall crack and reinforcement with CFRP laminates. Thin-Wall. Struct. 127(2018), 210–220.
  • [25] Aleksander C., Ochoa O.O.: Extending onshore pipeline repair to offshore steel risers with carbon–fiber reinforced composites. Compos. Struct. 92(2010), 499–507.
  • [26] Lim K.S., Azraai S.N.A., Yahaya N. Noor M.N., Zardasti L., Kim J.-H.J.: Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches. Thin-Wall. Struct. 139(2019), 321–333.
  • [27] Schiesser W.E.: The Numerical Method of Lines: Integration of Partial Differential Equations, Academic Press, San Diego 1991.
  • [28] Kaipio J., Somersalo E.: Statistical and Computational Inverse Problems. Applied Mathematical Sciences. Springer-Verlag, New York 2005.
  • [29] Kunz O., Wagner W. J.: The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. Chem. Eng. Data 57(2012), 3032–3091.
  • [30] MATLAB. version 9.7.0.1261785 (R2019b). Natick, Massachusetts: The MathWorks Inc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d3fc609-54a9-47e3-acc4-b93cb644949a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.