Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modification of bentonite by the Al/Fe metal oxide pillarization process was carried out with metal oxides. The bentonite pillars were successfully characterized using an X-Ray Diffraction (XRD) spectrophotometer. The results of XRD characterization showed the peak diffraction angle (2θ) in metal-pillared bentonite was 26.84° at 698.98 cps. Meanwhile, in thermally and chemically activated bentonite, the peak angles were marked at 20.64° and 26.7°. There is a shift in the peak angle after activation and pillarization. XRD patterns showed dioctahedral smectite and quartz accessory minerals.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
68--74
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Chemical Engineering Department, Faculty of Engineering, Universitas Tamansiswa, Jl. Tamansiswa No. 261, 20 Ilir D. I, Ilir Tim. I, Kota Palembang, Sumatera Selatan, Indonesia
autor
- Chemistry Department, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
- Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
- Chemical Engineering Department, Faculty of Engineering, Universitas Tamansiswa, Jl. Tamansiswa No. 261, 20 Ilir D. I, Ilir Tim. I, Kota Palembang, Sumatera Selatan, Indonesia
autor
- Mechanical Engineering Department, Faculty of Engineering, Universitas Tamansiswa, Jl. Tamansiswa No. 261, 20 Ilir D. I, Ilir Tim. I, Kota Palembang, Sumatera Selatan, Indonesia
autor
- Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
Bibliografia
- 1. Andrini L., Moreira Toja R., Gauna M.R., Conconi M.S., Requejo F.G., Rendtorff N. M. 2017. Extended and local structural characterization of a natural and 800 °C fired Na-montmorillonite–Patagonian bentonite by XRD and Al/Si XANES. Applied Clay Science, 137, 233–240. https://doi.org/10.1016/j.clay.2016.12.030
- 2. Andrunik M., Bajda T. 2019. Modification of bentonite with cationic and nonionic surfactants: Structural and textural features. Materials, 12(22). https://doi.org/10.3390/ma12223772
- 3. Dissanayake D.M.S.N., Mantilaka M.M.M.G.P.G., Pitawala H.M.T.G.A. 2020. Synthesis of low-cost magnetite nano-architectures from Sri Lankan laterites. Journal of Geological Society of Sri Lanka, 21(2), 90–100.
- 4. Elfadly A.M., Zeid I.F., Yehia F.Z., Abouelela M.M., Rabie A.M. 2017. Production of aromatic hydrocarbons from catalytic pyrolysis of lignin over acid-activated bentonite clay. Fuel Processing Technology, 163, 1–7. https://doi.org/10.1016/j.fuproc.2017.03.033
- 5. Gabrovska M., Edreva-Kardjieva R., Angelov V., Crişan D., Munteanu G., Védrine J. 2007. Mg-Al and Mg-In oxide compounds as catalyst components for the oxidative dehydrogenation of propane. Part I - Preparation and characterization of the as-synthesized materials. Revue Roumaine de Chimie, 52(5), 521–525.
- 6. Goodarzi A.R., Najafi Fateh S., Shekary H. 2016. Impact of organic pollutants on the macro and microstructure responses of Na-bentonite. Applied Clay Science, 121–122, 17–28. https://doi.org/10.1016/j.clay.2015.12.023
- 7. Hasanudin H., Asri W.R., Zulaikha I.S., Ayu C., Rachmat A., Riyanti F., Hadiah F., Zainul R., Maryana R. 2022. Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite. RSC Advances, 12(34), 21916–21925. https://doi.org/10.1039/d2ra03941a
- 8. Kar Y., Bozkurt G., Yalman Y. 2019. Liquid fuels from used transformer oil by catalytic cracking using bentonite catalyst. Environmental Progress and Sustainable Energy, 38(4), 1–6. https://doi.org/10.1002/ep.13080
- 9. Komadel P. 2016. Acid activated clays: Materials in continuous demand. Applied Clay Science, 131, 84–99. https://doi.org/10.1016/j.clay.2016.05.001
- 10. Kumar A., Lingfa P. 2020. Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. https://doi.org/10.1016/j.matpr.2019.10.037
- 11. Motawie A.M., Madany M.M., El-Dakrory A.Z., Osman H.M., Ismail E.A., Badr M.M., El-Komy D. A., Abulyazied D.E. 2014. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers. Egyptian Journal of Petroleum, 23(3), 331–338. https://doi.org/10.1016/j.ejpe.2014.08.009
- 12. Özgüven F.E., Pekdemir A.D., Önal M., Sarıkaya Y. 2019. Characterization of a bentonite and its permanent aqueous suspension. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(1), 11–18. https://doi.org/10.18596/jotcsa.535937
- 13. Panda A.K. 2018. Thermo-catalytic degradation of different plastics to drop in liquid fuel using calcium bentonite catalyst. International Journal of Industrial Chemistry, 9(2), 167–176. https://doi.org/10.1007/s40090-018-0147-2
- 14. Pentrák M., Hronský V., Pálková H., Uhlík P., Komadel P., Madejová J. 2018. Alteration of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: A combined XRD, FTIR, MAS NMR and AES study. Applied Clay Science, 163(April), 204–213. https://doi.org/10.1016/j.clay.2018.07.028
- 15. Wijaya K., Kurniawan M.A., Saputri W.D., Trisunaryanti W., Mirzan M., Hariani P.L., Tikoalu A.D. 2021. Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process. Journal of Environmental Chemical Engineering, 9(4), 105399. https://doi.org/10.1016/j.jece.2021.105399
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d3d0b2a-badc-484a-8269-091a1e141b90