PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase coding of information in the optical fibre sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining the dependence of phase difference modulations between light pulses in a modified Mach-Zehnder interferometer was used to develop an optical system coding the information and working as an eavesdropping sensor for an optical fibre information exchange system. The basic challenge in the system development is to maintain stable operation in changing environmental conditions, as well as to ensure optimal parameters of the phase modulator. The system was tested for various many-kilometer long transmission lines of single-mode fibres. The research was focused on achieving the normative Bit Error Rate for the system in the 100 Mbit/s range (STM-1). Such a system can be used in commercial applications for the code key secure transmission in the physical layer of the link.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Allwood, G., Wild, G. & Hinckley, S. Optical Fiber Sensors in Physical Intrusion Detection Systems: A Review. IEEE Sens. J. 16, 5497–5509 (2016). https://doi.org/10.1109/JSEN.2016.2535465
  • [2] Fok, M. P., Wang, Z., Deng, Z. & Prucnal, P. R. Optical Layer Security in Fiber-Optic Networks. IEEE Trans. Inf. Forensics Secur. 6, 725–736 (2011). https://doi.org/10.1109/TIFS.2011.2141990
  • [3] Javidi, B. et al. Roadmap on optical security. J. Opt. 18, 83001 (2016). https://doi.org/10.1088/2040-8978/18/8/083001
  • [4] Rosenberg, D. et al. Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber. Phys. Rev. Lett. 98, 10503 (2007). DOI: https://doi.org/10.1103/PhysRevLett.98.010503
  • [5] Hadfield, R. H., Stevens, M. J., Mirin, R. P. & Nam, S. W. Singlephoton source characterization with twin infrared-sensitive superconducting single-photon detectors. J. Appl. Phys. 101, 103104 (2007). https://doi.org/10.1063/1.2717582
  • [6] Scheuer, J. & Yariv, A. Giant Fiber Lasers: A New Paradigm for Secure Key Distribution. Phys. Rev. Lett. 97, 140502 (2006). DOI: https://doi.org/10.1103/PhysRevLett.97.140502
  • [7] Ben-Or, M., Horodecki, M., Leung, D. W., Mayers, D. & Oppenheim, J. The Universal Composable Security of Quantum Key Distribution. in (ed. Kilian, J.) 386–406 (Springer, 2005). https://doi.org/10.1007/978-3-540-30576-7_21
  • [8] Baignères, T. Quantum Cryptography : On the Security of the BB84 Key-Exchange Protocol. (2010).
  • [9] Shor, P. W. & Preskill, J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Phys. Rev. Lett. 85, 441–444 (2000). https://doi.org/10.1103/PhysRevLett.85.441
  • [10] Sun, S.-H., Ma, H.-Q., Han, J., Liang, L.-M. & Li, C.-Z. Quantum key distribution based on phase encoding in long-distance communication fiber. Opt. Lett. 35, 1203–1205 (2010). https://doi.org/10.1364/OL.35.001203
  • [11] Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on Practical Quantum Cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330
  • [12] Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686–689 (2010). https://doi.org/10.1038/NPHOTON.2010.214
  • [13] Karol, M., Życzkowski, M. & Szustakowski, M. Safety of data exchange in pulse interferometer. in Optical Fibers and Their Applications 2017 vol. 10325 103250S (International Society for Optics and Photonics, 2017). https://doi.org/10.1117/12.2271034
  • [14] Życzkowski, M. & Karol, M. Determining the alarm signal in pulse interferometric fibre sensor by two independent criteria. in 25th International Conference on Optical Fiber Sensors vol. 10323 103238G (International Society for Optics and Photonics, 2017). https://doi.org/10.1117/12.2265643
  • [15] Życzkowski, M. & Karol, M. Pulsed interferometric optical fibre sensor detecting wiretapping in long transmission lines. OptoElectronics Rev. 26, 183–187 (2018). https://doi.org/10.1016/j.opelre.2018.04.003
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d3c5f96-6a9d-41ce-a247-3903b18f3b5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.