PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SiC-based magnetic-less DC-DC converter with wide temperature range operation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przekształtnik DC-DC bazujący na SiC pracująy w szerokim zakresie temperatur
Języki publikacji
EN
Abstrakty
EN
This paper presents a concept and experimental results of the magnetic-less converter suitable for wide temperature range operation. The DC-DC converter uses a variant of a switched-capacitor voltage multiplier topology, silicon carbide (SiC) and IGBT (insulated gate bipolar transistor) semiconductors and resonant circuits with air-based chokes designed on PCB (printed circuit board), as well as high temperature resonant capacitors and PCB materials. Ferrite materials are not required which and therefore the problems with inductance variation versus temperature do not exist.
PL
W artykule przedstawiono koncepcję i wyniki doświadczalne przekształtnika do pracy w szerokim zakresie temperatur. W przekształtniku zastosowano wariant topologii rezonansowo przełączalnych kondensatorów, półprzewodniki z węglika krzemu (SiC) i IGBT oraz obwody rezonansowe z dławikami powietrznymi zaprojektowanymi na PCB, a także wysokotemperaturowe kondensatory rezonansowe oraz specjalny materiał PCB. Rdzeń ferrytowy nie został tu zastosowany, a zatem nie istnieje problemy ze zmianą indukcyjności w zależności od temperatury pracy układu.
Rocznik
Strony
56--63
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, 30-059 Krakow, Poland
  • AGH University of Science and Technology, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, 30-059 Krakow, Poland
Bibliografia
  • [1] Guo, X.; Xun, Q.; Li, Z.; Du, S. Silicon Carbide Converters and MEMS Devices for High-temperature Power Electronics: A Critical Review. Micromachines (Basel). 2019;10(6):406. Published 2019 Jun 19. doi:10.3390/mi10060406
  • [2] Buttay, C.; Planson, D.; Allard, B.; Bergogne, D.; Bevilacqua, P.; Joubert, C.; Lazar, M.; Martin, C.; Morel, H.; Tournier, D.; Raynaud, C.; State of the art of high temperature power electronics, Materials Science and Engineering: B, Volume 176, Issue 4,2011,Pages 283-288,ISSN 0921-5107.
  • [3] Wang, Z. et al. Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs, in IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1555-1566, Feb. 2016. doi: 10.1109/TPEL.2015.2416358
  • [4] Deshpande, A.; and Luo, F. Practical Design Considerations for a Si IGBT + SiC MOSFET Hybrid Switch: Parasitic Interconnect Influences, Cost, and Current Ratio Optimization, in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 724-737, Jan. 2019. doi: 10.1109/TPEL.2018.2827989
  • [5] Zhong, X.; Wu, X.; Zhou, W.; Sheng, K. An All-SiC High- Frequency Boost DC–DC Converter Operating at 320 °C Junction Temperature, in IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5091-5096, Oct. 2014. doi: 10.1109/TPEL.2014.2311800.
  • [6] Qi, F.; Wang, M.; Xu, L. Investigation and Review of Challenges in a High-Temperature 30-kVA Three-Phase Inverter Using SiC MOSFETs, in IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2483-2491, May-June 2018. doi: 10.1109/TIA.2018.2796059
  • [7] Olejniczak, K. et al., A compact 110 kVA, 140°C ambient, 105°C liquid cooled, all-SiC inverter for electric vehicle traction drives, 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 735-742. doi: 10.1109/APEC.2017.7930776
  • [8] Wrzecionko, B.; Bortis, D.; Kolar, J. W. A 120 °C Ambient Temperature Forced Air-Cooled Normally-off SiC JFET Automotive Inverter System, in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2345-2358, May 2014. doi: 10.1109/TPEL.2013.2294906
  • [9] Juanjuan, L.; Zhe Z.; Jianhong, H.; Yi, H.; Hao, Z.; Ruixiang, H. High-temperature characteristics of SiC module and 100 kW SiC AC-DC converter at a junction temperature of 180 °C, Global Energy Interconnection, Volume 2, Issue 6, 2019, Pages 521-530,
  • [10] Marzoughi, A.; Wang, J.; Burgos, R.; Boroyevich, D. Characterization and Evaluation of the State-of-the-Art 3.3-kV 400-A SiC MOSFETs, in IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8247-8257, Oct. 2017.
  • [11] Barlow, M.; et al. SiC-CMOS digital circuits for high temperature power conversion, 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, 2016, pp. 223-227.doi: 10.1109/WiPDA.2016.7799942.
  • [12] Lei, Y.; Pilawa-Podgurski, R.C.N. A general method for analyzing resonant and soft-charging Operation of switchedcapacitor converters, IEEE Trans. Power Electron., vol. 30, no. 10, pp. 56505664, Oct. 2015.
  • [13] Stala, R.; Piróg, S.; Penczek, A.; Kawa, A.; Waradzyn, Z.; Mondzik, A.; Skała, A. A family of high-power multilevel switched capacitor-based resonant DC-DC converters – operational parameters and novel concepts of topologies, , 65, No 5 pp. 639-651, 2017.
  • [14] Waradzyn, Z.; Stala, R.; Mondzik, A.; Penczek, A.; Skała, A.; Pirog, S. Efficiency Analysis of MOSFET-Based Air-Choke Resonant DC-DC Step-Up Switched-Capacitor Voltage Multipliers. IEEE Transactions on Industrial Electronics, 64(11), pp. 8728–8738. doi: 10.1109/ TIE.2017.2698368.
  • [15] Waradzyn, Z.; Stala, R.; Mondzik, A.; Pirog, S. Switched capacitor-based power electronic converter – optimization of high frequency resonant circuit components. In: J. Kabziński, ed., Advanced Control of Electrical Drives and Power Electronic Converters, ser. Studies in Systems, Decision and Control, Vol. 75, Switzerland: Springer International Publishing AG, pp. 361–378.
  • [16] Waradzyn, Z.; Stala, R.; Skała, A.; Mondzik, A.; and Penczek, A. A Cost-Effective Resonant Switched-Capacitor DC-DC Boost Converter – Experimental Results and Feasibility Model. Power Electronics and Drives 3(38), No. 1, 2018 DOI: 10.2478/pead-2018-0004.
  • [17] Ye, Y.; Cheng K. W. E. A family of single-stage switchedcapacitor– inductor PWM converters, IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5196–5205, Nov. 2013, doi: 10.1109/TPEL.2013.2245918.
  • [18] Wu, B.; Li, S.; Smedley, K. M.; and Singer, S. A family of twoswitch boosting switched-capacitor converters, IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5413–5424, Oct. 2015, doi: 10.1109/TPEL.2014.2375311.
  • [19] Cao and Peng F. Z. A family of zero current switching switched-capacitor dc-dc converters, in Proc. 25th Annu. IEEE Appl. Power Electron. Conf. Expo., Feb. 21–25, 2010, pp. 1365–1372, doi: 10.1109/APEC.2010.5433407.
  • [20] Jiao, Y.; Luo, F. L. N-switched-capacitor buck converter: topologies and analysis, IET Power Electron., vol. 4, no. 3, pp. 332–341, Mar. 2011, doi: 10.1049/iet-pel.2010.0104.
  • [21] SH260 - High Performance, Polyimide Laminate and Prepreg. Online: http://www.syst.com.cn.
  • [22] Mn-Zn Ferrite Material characteristics - November 2019 Online: https://product.tdk.com/info/en/catalog/datasheets/ferrite_mnzn_ material_characteristics_en.pdf
  • [23] Konrad, J.; Koini, M.; Schossmann, M.; Puff, M. New demands on DC link power capacitors, Congress on Automotive Electronic Systems - 3rd and 4th, December 2014
  • [24] Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) KC-LINK™ for Fast Switching Semiconductor Applications DC Link, Snubber, Resonator Capacitor, 150°C (Commercial & Automotive Grade) Online: https://content.kemet.com/datasheets/KEM_C1039_KCLINK_ C0G.pdf
  • [25] Datasheet of UJ3C065030B3- 650V-27mW SiC FET. Preliminary, December 2019. Online: https://unitedsic.com/datasheets/DS_UJ3C065030B3.pdf
  • [26] Datasheet of IKB15N65EH5 TRENCHSTOP TM 5 high speed switching IGBT copacked withfull rated current RAPID 1 antiparallel diode. Online: https://www.infineon.com/dgdl/Infineon- IKB15N65EH5-DS-v02_01- EN.pdf?fileId=5546d46262b31d2e0162cd1328dc4914
  • [27] The datasheet of UCC21520, UCC21520A 4-A, 6-A, 5.7- kVRMS Isolated Dual-Channel Gate Driver datasheet (Rev. C): http://www.ti.com/lit/ds/symlink/ucc21520.pdf
  • [28] Timothy Hegarty, An overview of conducted EMI specifications for power supplies, Texas Instruments, 2018. Online: https://www.ti.com/lit/wp/slyy136/slyy136.pdf?ts=1595574171360&r ef_url=https%253A%252F%252Fwww.google.com%252F
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d3aacdc-866b-4e1f-9fbe-eecf0d36488d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.