PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the greenness of micellar HPLC method for rapid separation and simultaneous estimation of chlorpheniramine maleate in presence of some co-administered drugs in three pharmaceutical dosage forms using single run

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sustainable chemistry established one of kind standards to maintain protection of environment through using safer mobile phase composition and/or lower solvent consumption. A fast green micellar HPLC method was developed and applied for the first time aiming at simultaneous determination of chlorpheniramine maleate, one of the most widely used antihistamine in combination with levochlopersatine fenodizoate or dextromethorphan hydrobromide or dexamethasone, in their pure forms, laboratory prepared mixtures and pharmaceutical dosage forms used in alleviating the symptoms of cough resulting from common colds and allergy. The separation was achieved on Kinetex C18 column (100 mm34.6 mm i.d., 2.6-mm particle size) using micellar aqueous mobile phase consisting of (30 mM sodium dodecyl sulfate and 50 mM sodium dihydrogen phosphate, pH 5) and ethanol (85:15) with UV detection at 230 nm. The four drugs were successfully separated using isocratic elution in a single run not exceeding 7 min. According to ICH guidelines, the method was confirmed to be linear, accurate and precise over the concentration ranges of 5–60 mg mL1 for chlorpheniramine maleate, 10–100 mg mL1 for levocloperastine fenodizoate and dextromethorphan hydrobromide and 5–30 mg mL1 for dexamethasone. In addition, the greenness of the developed method was assessed using two different tools indicating their least hazardous effect on the environment.
Rocznik
Strony
138--149
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837, El Sherouk city, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
Bibliografia
  • 1. Mohamed, S.A.; Belal, F.F. A micellar HPLC method for simultaneous determination of methocarbamol in three different tablets using single run; application to human plasma and evaluation of the method greenness. Microchem. J. 2019, 148, 262–9.
  • 2. Rashed, N.S.; Zayed, S.; Abdelazeem, A.; Fouad, F. Development and validation of a green HPLC method for the analysis of clorsulon, albendazole, triclabendazole and ivermectin using monolithic column: assessment of the greenness of the proposed method. Microchem. J. 2020, 157, 105069.
  • 3. El-Shaheny, R.N.; El-Maghrabey, M.H.; Belal, F.F. Micellar liquid chromatography from green analysis perspective. Open Chem. 2015, 13(1), 877–92.
  • 4. Sagathiya, K.; Bagada, H. Development and validation of RP-HPLC and HPTLC method of analysis for simultaneous estimation of ambroxol HCL, Dextromethorphan HBR and Guaifenesin in pharmaceutical cough cold preparation and statistical comparison of developed methods. Int. J. Pharm. Pharm. Sci. 2014, 6, 312–6.
  • 5. Martindale, The Complete Drug Reference, 36th edn, The Pharmaceutical Press, London, 2014.
  • 6. Sharma, B.; Satone, D.; Pradhan, P.; Jain, H.; Meshram, H. Development and validation of RP-HPLC method for simultaneous estimation of levocloperastine fendizoate and chlorpheniramine maleate in their combined dosage form. Austin. J. Anal. Pharm. Chem. 2017, 4(2), 1083–90.
  • 7. Murtha, J.L.; Julian, T.N.; Radebaugh, G.W. Simultaneous determination of pseudoephedrine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydrobromide by second-derivative photodiode array spectroscopy. J. Pharm. Sci. 1988, 77(8), 715–8.
  • 8. Khalode, K.D.; Waikar, S.B.; Padmane, S.P. A validated UV spectrophotometric method for simultaneous estimation of dextromethorphan hydrobromide and chlorpheniramine maleate in syrup formulation. IJPT 2012, 4(3), 4690–9.
  • 9. Gupta, N.D.; Heble, A.R. Quantitation of acetaminophen, chlorpheniramine maleate, dextromethorphan hydrobromide, and phenylpropanolamine hydrochloride in combination using high-performance liquid chromatograph. J. Pharm. Sci. 1984, 73(11), 1553–6.
  • 10. Wanjari, D.B.; Parashar, V.V.; Lulay, S.N.; Tajne, M.R.; Gaikwad, N.J. Simultaneous HPLC estimation of acetaminophen, chlopheniramine maleate, dextromethorphan hydrobromide and pseudoephedrine hydrochloride in tablets. Indian J. Pharm. Sci. 2004, 66(3), 345–7.
  • 11. Heydari, R. A New HPLC method for the simultaneous determination of acetaminophen, phenylephrine, dextromethorphan, chlorpheniramine in pharmaceutical formulation. Anal. Lett. 2008, 41(1), 965–76.
  • 12. Khalode, K.D.; Waiker, S.B.; Padmane, S.P. A Validated RP-HPLC Method for the simultaneous estimation of dextromethorphan hydrobromide and chlorpheniramine maleate in syrup formulation. Am. J. Pharm. Tech. Res. 2012, 2, 392–4.
  • 13. Goyal, T. A novel stability indicating HPLC methods for simultaneous estimation of guaiphensein, chlorpheniramine maleate and dextromethorphan HBr. IJPSR 2013, 4(11), 4435–41.
  • 14. Kapildev, R.J. Analytical method development and validaton of RPHPLC for simultaneously estimation of chlorpheniramine maleate, dextromethorphen hydro-bromide, phenylephrine hydrochloride in cough syrup. IRAJ 2016, 4(1), 53–8.
  • 15. Jain, V.; Sharma, M.C. Validated RP-HPLC method for determining the levels of bromhexine HCl, chlorpheniramine maleate, dextromethorphan HBr and guaiphenesin in their pharmaceutical dosage forms. J. Taibah. Univ. Sci. 2016, 10(1), 38–45.
  • 16. Gyanendra, P.; Palled, M.S.; Bhat, A. R.; Gyanendra, P.S.; Aruna, M. Analytical method development and validation of acetaminophen, caffeine, phenylephrine hydrochloride, dextromethorphan hydrobromide and chlorpheniramine Maleate in tablet dosage form by RP- HPLC. Int. J. Pharm. Res. 2017, 1, 10–3.
  • 17. Kumar, M. S.; Shanmugapandiyan, P. RP-HPLC-PDA method for the simultaneous determination of phenylepherine, chlorpheneramine, paracetamol and dextromethorphan in bulk and marketed formulation. J. Pharm. Res. 2017, 11(2), 306–12.
  • 18. Din, N.U.; Shafi, H.; Imran, M.; Sarwar, M.; Tahir, M.A.; Khursheed, S. Validated reversed-phase liquid chromatographic method for simultaneous determination of dextromethorphan and chlorpheniramine in non-biological and biological matrices using PDA detector. Pharm. Anal. Acta 2018, 9(7), 1–6.
  • 19. Sirigiri, B.; Chengalva, P.; Parameswari, S. A.; Aruna, G. Novel HPLC methods for simultaneous determination of chlorpheniramine maleate and dextromethorphan in bulk and pharmaceutical formulation. IJPSR 2018, 9(3), 1147–51.
  • 20. El-Yazbi, F. A.; Korany, M.; Abdel-Razak, O.; Elsayed, M. Derivative spectrophotometric determination of some corticosteroids in combinations with other drugs. J. Assoc. Offic. Anal. Chem. 1986, 69(4), 614–8.
  • 21. Goicoechea, H.C.; Collado, M.S.; Satuf, M.L.; Olivieri, A. C. Complementary use of partial least-squares and artificial neural networks for the non-linear spectrophotometric analysis of pharmaceutical samples. Anal. Bioanal. Chem. 2002, 374(3), 460–5.
  • 22. Darwish, H. W.; Metwally, F. H.; El Bayoumi, A. Discrete wavelet transform-partial least squares versus derivative ratio spectrophotometry for simultaneous determination of chlorpheniramine maleate and dexamethasone in the presence of parabens in pharmaceutical dosage form. Trop. J. Pharm. Res. 2015, 14(5), 859–67.
  • 23. Darwish, H.W.; Metwally, F. H.; El Bayoumi, A. Development of three methods for simultaneous quantitative determination of chlorpheniramine maleate and dexamethasone in the presence of parabens in oral liquids. Trop. J. Pharm. Res. 2015, 14(1), 153–61.
  • 24. El-Yazbi, F.A.; Hammud, H. H.; Assi, S.A. New spectrofluorometric application for the determination of ternary mixtures of drugs. Anal. Chim. Acta 2006, 580(1), 39–46.
  • 25. Hattori, T.; Washio, Y.; Kamiya, N.; Itoh, Y.; Inoue, M. High performance liquid chromatographic analysis of drugs. I. Simultaneous determination of dexamethasone and chlorpheniramine maleate in ointment. J. Pharm. Soc. Jpn. 1979, 99(5), 537–9.
  • 26. Moyano, M. A.; Rosasco, M. A.; Pizzorno, M.T.; Segall, A.I. Simultaneous determination of chlorpheniramine maleate and dexamethasone in a tablet dosage form by liquid chromatography. J. AOAC Int. 2005, 88(6), 1677–83.
  • 27. Farid, N.F.; Naguib, I. A.; Moatamed, R. S.; El Ghobashy, M. R. TLC-Densitometric and RP-HPLC methods for simultaneous determination of dexamethasone and chlorpheniramine maleate in the presence of methylparaben and propylparaben. J. AOAC Int. 2017, 100(1), 51–8.
  • 28. Duan, X.; Liu, X.; Dong, Y.; Zhang, J.; He, S.H.; Uhagaze, S. A micellar HPLC simultaneous determination of six active ingredients in cold compound preparations. J. Liq. Chrom. Relat. Technol. 2019, 42(15-16), 485–93.
  • 29. Suntornsuk, L.; Pipitharome, O.; Wilairat, P. Simultaneous determination of paracetamol and chlorpheniramine maleate by micellar electrokinetic chromatography. J. Pharm. Biomed. Anal. 2003, 33, 441–9.
  • 30. Dong, Y.; Li, N.; An, O.; Lu, N. A novel nonionic micellar liquid chromatographic method for simultaneous determination of pseudoephedrine, paracetamol, and chlorpheniramine in cold compound preparations. J. Liq. Chromat. Rel. Tech. 2015, 38, 251–8.
  • 31. Eid, M.; El-Shabrawy, Y.; El-Shaheny, R. Green micellar HPLC analysis of three angiotensin-converting enzyme inhibitors in their mixtures with hydrochlorothiazide and modeling of their retention behavior by fitting to Foley’s model. J. Sep. Sci. 2017, 40(18), 3646–54.
  • 32. ICH, Guidelines. Technical requirements for the registration of pharmaceutical for human use, validation of analytical procedures: text and methodologyQ2 (R1); International Conference on harmonization: Geneva, Switzerland, 2005; pp 11–2.
  • 33. Miller, J.C.; Miller, J.N. Statistics and Chemometrics for Analytical Chemistry, 5th edition Pearson Education Limited, Harlow, 2005.
  • 34. United States Pharmacopeia, 38/National Formulary 33 US Pharmacopeial Convention, Inc, Rockville, MD, 2014.
  • 35. Gałuszka, A. ; Konieczka, P. ; Migaszewski, Z. M. ; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trac. Trends Anal. Chem. 2012, 37, 61–72.
  • 36. Tobiszewski, M.; Marc, M.; Galuszka, A.; Namiesnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules 2015, 20, 10928–46.
  • 37. Plotka-Wasylka, J.; A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta 2018, 181, 204–9.
  • 38. Tobiszewski, M.; Mechlińska, A.; Namieśnik, J.; Green analytical chemistry–theory and practice. Chem. Soc. Rev. 2010, 39, 2869–78.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d390671-35ae-4232-ac81-3518ee1105c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.