Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
CdSe₁-ₓSₓ (x = 0, 0.3, 0.4, 0.6, and 1) thin films were deposited on a quartz and silicon substrate using high-frequency magnetron sputtering. X-ray diffraction analysis estimated that the CdSe₁-ₓSₓ thin films are crystallized in a hexagonal structure [structure type - ZnO, space group P6₃mc (No. 186)]. Spectral dependence of the optical transmittance between 300 and 1500 nm of the obtained thin films at room temperature was measured. Normalized integral optical transmittance, optical band gap, spin-orbit splitting, and the value of the bowing parameter of the CdSe₁-ₓSₓ thin films are determined. The values of the optical band gaps for CdSe₁-ₓSₓ thin films were estimated using the two methods (by Tauc plot and dT/dλ). Concentration dependences of the energy gaps connected with the leading optical transitions in CdSe₁-ₓSₓ (Г₈ᵥ-Г₆c, Г₇ᵥ-Г₆c) and spin-orbit splitting are studied. It is shown that the concentration dependences of main optical transitions are quadratic. The principal explanation for this seems to be the Burstein-Moss effect, which is caused by the doping atoms' excess carriers (electrons and holes).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e153808
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
autor
- Faculty of Electronics and Computer Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75‑453 Koszalin, Poland
autor
- Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
autor
- Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
autor
- Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75‑453 Koszalin, Poland
autor
- Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
Bibliografia
- [1] Poplawsky, J. D. et al. Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 7, 12537 (2016). https://doi.org/10.1038/ncomms12537.
- [2] Bosio, A., Romeo, N., Mazzamuto, S. & Canevari, V. Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247-279 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.09.001.
- [3] Petrus, R. Yu. et al. Optical properties of materials for solar energy based on cadmium chalcogenides thin films. Phys. Chem. Solid State 20, 367-371 (2019). https://doi.org/10.15330/pcss.20.4.367-371.
- [4] Romeo, N., Bosio, A., Mazzamuto, S., Romeo, A. & Vaillant-Roca, L. High Efficiency CdTe/CdS Thin Film Solar Cells with A Novel Back-Contact. in 22nd European Photovoltaic Solar Energy Conference 1919-1921 (EU PVSEC, 2007).
- [5] Kamel, N. S., Aadim, K. A. & Kadhim, A. Study of the characterizationn of CdTe thin films prepared by the pulsed laser deposition technique with different laser energies. Adv. Nat. Sci: Nanosci. Nanotechnol. 14, 025015 (2023). https://doi.org/10.1088/2043-6262/acd683.
- [6] Wang, D., Li, X. & Qin, G. Relaxation effects on the structural and piezoelectric properties of wurtzite ZnS and CdS thin films under in-plane strain. Microelectron. Eng. 286, 112131 (2024). https://doi.org/10.1016/j.mee.2023.112131.
- [7] Dumre, B. B. et al. Improved optoelectronic properties in CdSexTe1-x through controlled composition and short-range order. Sol. Energy 194, 742-750 (2019). https://doi.org/10.1016/j.solener.2019.10.091.
- [8] Kashuba, A. I. et al. Growth, crystal structure and theoretical studies of energy and optical properties of CdTe1-xSex thin films. Appl. Nanosci. 12, 335-342 (2022). https://doi.org/10.1007/s13204-020-01635-0.
- [9] Kashuba, A. I. & Andriyevsky, B. Growth and crystal structure of CdTe1-xSex (x ≥ 0.75) thin films prepared by the method of high-frequency magnetron sputtering. Low Temp. Phys. 50, 29-33 (2024). https://doi.org/10.1063/10.0023888.
- [10] Li, C. et al. Properties of CdSe1-xSx films by magnetron sputtering and their role in CdTe solar cells. J. Mater. Sci.: Mater. Electron. 31, 21455-21466 (2020). https://doi.org/10.1007/s10854-020-04659-y.
- [11] Paudel, N. R. & Yan, Y. Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 105, 183510 (2014). https://doi.org/10.1063/1.4901532.
- [12] Baines, T. et al. Incorporation of CdSe layers into CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells. 180, 196-204 (2018). https://doi.org/10.1016/j.solmat.2018.03.010.
- [13] Bao, Z. et al. The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J. Mater. Sci.: Mater. Electron. 27, 7233-7239 (2016). https://doi.org/10.1007/s10854-016-4689-9.
- [14] Bao, Z. et al. Synthesis and characterization of novel oxygenated CdSe window layer for CdTe thin film solar cells. Mater. Sci. Semicond. Process. 63, 12-17 (2017). https://doi.org/10.1016/j.mssp.2017.01.003.
- [15] Kashuba, A., Semkiv, I., Andriyevsky, B., Ilchuk, H. & Pokladok, N. Structural and morphological properties of CdSe1-xSx thin films obtained by the method of high-frequency magnetron sputtering. Phys. Chem. Solid State 25, 40-44 (2024). https://doi.org/10.15330/pcss.25.1.40-44.
- [16] Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37-46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8.
- [17] Zuala, L. & Agarwal, P. Effect of Se concentration on mixed phonon modes and spin orbit splitting in thermally evaporated CdSxSe1-x (0 ≤ x ≤ 1) films using CdS-CdSe nano-composites. Mater. Chem. Phys. 162, 813-821 (2015). https://doi.org/10.1016/j.matchemphys.2015.07.008.
- [18] Kashuba, A. I. et al. Concentration dependences of electronic band structure of CdSe1-xSx thin films. Appl. Nanosci. 13, 4761-4770 (2023). https://doi.org/10.1007/s13204-022-02613-4.
- [19] Murphy, M. W. et al. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations. J. Appl. Phys. 166, 193709 (2014). https://doi.org/10.1063/1.4902390.
- [20] Pedrotti, F. L. & Reynolds, D. C. Spin-orbit splitting in CdS:Se single crystals. Phys. Rev. 127, 1584-1586 (1962). https://doi.org/10.1103/PhysRev.127.1584.
- [21] Ameri, M. et al. Structural and electronic properties calculations of BexZn1-xSe alloy. Mater. Sci. Semicond. Process. 10, 6-13 (2007). https://doi.org/10.1016/j.mssp.2007.01.003.
- [22] Kim, K., Hart, G. L. W. & Zunger, A. Negative band gap bowing in epitaxial InAs/GaAs alloys and predicted band offsets of the strained binaries and alloys on various substrates. Appl. Phys. Lett. 80, 3105-3107 (2002). https://doi.org/10.1063/1.1470693.
- [23] Singh, S. D. Determination of the optical gap bowing parameter for ternary Ni1-xZnxO cubic rocksalt solid solutions. Dalton Trans. 44, 14793-14798 (2015). https://doi.org/10.1039/C5DT02283E.
- [24] Grundmann, M. The Physics of Semiconductors. An Introduction Including Devices and Nanophysics. (Springer, 2006). https://doi.org/10.1007/3-540-34661-9.
- [25] Hernandez-Calderon, I. Optical Properties and Electronic Structure of Wide Band Gap II–VI Semiconductors. in II-VI Semiconductor Materials and their Applications (Ed. Tamargo, M. C) 145 (Taylor and Francis, 2002).
- [26] Bernard, J. E. & Zunger, A. Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys. Rev. B 36, 3199-3228 (1987). https://doi.org/10.1103/PhysRevB.36.3199.
- [27] Van Cong, H. 34.375% (33.72%)-maximal efficiencies, obtained in CdSe1-xSx, CdSe1-xTex-crystalline alloy junction solar cells at 300 K. Eur. J. Appl. Sci. Eng. Technol. 2, 150-174 (2024). https://doi.org/10.59324/ejaset.2024.2(2).11.
- [28] Zafar, M. et al. Ab initio study of structural, electronic and elastic properties of CdSe1-xSx semiconductor. Sol. Energy 158, 63-70 (2017). https://doi.org/10.1016/j.solener.2017.09.034.
- [29] Lau, P. C., Zhu, Z., Norwood, R. A., Mansuripur, M. & Peyghambarian, N. Thermally robust and blinking suppressed core/graded-shell Cd e/Cd e1-x x/Cd ‘giant’ multishell semi-conductor nanocrystals. Nanotechnology 24, 475705 (2013). https://doi.org/10.1088/0957-4484/24/47/475705.
- [30] Junda, M. M. et al. Optical Properties of CdSe1-xSx and CdSe1-yTey Alloys and Their Application for CdTe Photovoltaics. in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) 3426-3429 (IEEE, 2017). https://doi.org/10.1109/PVSC.2017.8366483.
- [31] Almohammedi, A., Ashour, A. & Shaaban, E. R. Structural and optical investigations of chalcogenide CdSe1-xSx thin films for optoelectronic applications. Chalcogenide Lett. 16, 113-122 (2019). https://chalcogen.ro/113_AlmohammediA.pdf.
- [32] Van Cong, H. (14.82 %, 12.16 %, 26.55 %, or 23.69 %)-limiting highest efficiencies, respectively in n+(p+)-p(n) crystalline (X≡Ge,GaSb,CdTe, or CdSe)-junction solar cells, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion. SCIREA J. Phys. 8, 575-595 (2023). https://doi.org/10.54647/physics140591.
Uwagi
1. This research was supported by the National research foundation of Ukraine (project no. 2022.01/0163).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d362a5d-99eb-4544-a2a8-8abcd1f9f5fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.