PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical and energy properties of CdSe1-xSx thin films obtained by the method of high-frequency magnetron sputtering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
CdSe₁-ₓSₓ (x = 0, 0.3, 0.4, 0.6, and 1) thin films were deposited on a quartz and silicon substrate using high-frequency magnetron sputtering. X-ray diffraction analysis estimated that the CdSe₁-ₓSₓ thin films are crystallized in a hexagonal structure [structure type - ZnO, space group P6₃mc (No. 186)]. Spectral dependence of the optical transmittance between 300 and 1500 nm of the obtained thin films at room temperature was measured. Normalized integral optical transmittance, optical band gap, spin-orbit splitting, and the value of the bowing parameter of the CdSe₁-ₓSₓ thin films are determined. The values of the optical band gaps for CdSe₁-ₓSₓ thin films were estimated using the two methods (by Tauc plot and dT/dλ). Concentration dependences of the energy gaps connected with the leading optical transitions in CdSe₁-ₓSₓ (Г₈-Г₆c, Г₇-Г₆c) and spin-orbit splitting are studied. It is shown that the concentration dependences of main optical transitions are quadratic. The principal explanation for this seems to be the Burstein-Moss effect, which is caused by the doping atoms' excess carriers (electrons and holes).
Rocznik
Strony
art. no. e153808
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
  • Faculty of Electronics and Computer Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75‑453 Koszalin, Poland
  • Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
autor
  • Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
  • Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75‑453 Koszalin, Poland
autor
  • Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., Lviv, 79013, Ukraine
Bibliografia
  • [1] Poplawsky, J. D. et al. Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 7, 12537 (2016). https://doi.org/10.1038/ncomms12537.
  • [2] Bosio, A., Romeo, N., Mazzamuto, S. & Canevari, V. Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247-279 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.09.001.
  • [3] Petrus, R. Yu. et al. Optical properties of materials for solar energy based on cadmium chalcogenides thin films. Phys. Chem. Solid State 20, 367-371 (2019). https://doi.org/10.15330/pcss.20.4.367-371.
  • [4] Romeo, N., Bosio, A., Mazzamuto, S., Romeo, A. & Vaillant-Roca, L. High Efficiency CdTe/CdS Thin Film Solar Cells with A Novel Back-Contact. in 22nd European Photovoltaic Solar Energy Conference 1919-1921 (EU PVSEC, 2007).
  • [5] Kamel, N. S., Aadim, K. A. & Kadhim, A. Study of the characterizationn of CdTe thin films prepared by the pulsed laser deposition technique with different laser energies. Adv. Nat. Sci: Nanosci. Nanotechnol. 14, 025015 (2023). https://doi.org/10.1088/2043-6262/acd683.
  • [6] Wang, D., Li, X. & Qin, G. Relaxation effects on the structural and piezoelectric properties of wurtzite ZnS and CdS thin films under in-plane strain. Microelectron. Eng. 286, 112131 (2024). https://doi.org/10.1016/j.mee.2023.112131.
  • [7] Dumre, B. B. et al. Improved optoelectronic properties in CdSexTe1-x through controlled composition and short-range order. Sol. Energy 194, 742-750 (2019). https://doi.org/10.1016/j.solener.2019.10.091.
  • [8] Kashuba, A. I. et al. Growth, crystal structure and theoretical studies of energy and optical properties of CdTe1-xSex thin films. Appl. Nanosci. 12, 335-342 (2022). https://doi.org/10.1007/s13204-020-01635-0.
  • [9] Kashuba, A. I. & Andriyevsky, B. Growth and crystal structure of CdTe1-xSex (x ≥ 0.75) thin films prepared by the method of high-frequency magnetron sputtering. Low Temp. Phys. 50, 29-33 (2024). https://doi.org/10.1063/10.0023888.
  • [10] Li, C. et al. Properties of CdSe1-xSx films by magnetron sputtering and their role in CdTe solar cells. J. Mater. Sci.: Mater. Electron. 31, 21455-21466 (2020). https://doi.org/10.1007/s10854-020-04659-y.
  • [11] Paudel, N. R. & Yan, Y. Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 105, 183510 (2014). https://doi.org/10.1063/1.4901532.
  • [12] Baines, T. et al. Incorporation of CdSe layers into CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells. 180, 196-204 (2018). https://doi.org/10.1016/j.solmat.2018.03.010.
  • [13] Bao, Z. et al. The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J. Mater. Sci.: Mater. Electron. 27, 7233-7239 (2016). https://doi.org/10.1007/s10854-016-4689-9.
  • [14] Bao, Z. et al. Synthesis and characterization of novel oxygenated CdSe window layer for CdTe thin film solar cells. Mater. Sci. Semicond. Process. 63, 12-17 (2017). https://doi.org/10.1016/j.mssp.2017.01.003.
  • [15] Kashuba, A., Semkiv, I., Andriyevsky, B., Ilchuk, H. & Pokladok, N. Structural and morphological properties of CdSe1-xSx thin films obtained by the method of high-frequency magnetron sputtering. Phys. Chem. Solid State 25, 40-44 (2024). https://doi.org/10.15330/pcss.25.1.40-44.
  • [16] Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37-46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8.
  • [17] Zuala, L. & Agarwal, P. Effect of Se concentration on mixed phonon modes and spin orbit splitting in thermally evaporated CdSxSe1-x (0 ≤ x ≤ 1) films using CdS-CdSe nano-composites. Mater. Chem. Phys. 162, 813-821 (2015). https://doi.org/10.1016/j.matchemphys.2015.07.008.
  • [18] Kashuba, A. I. et al. Concentration dependences of electronic band structure of CdSe1-xSx thin films. Appl. Nanosci. 13, 4761-4770 (2023). https://doi.org/10.1007/s13204-022-02613-4.
  • [19] Murphy, M. W. et al. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations. J. Appl. Phys. 166, 193709 (2014). https://doi.org/10.1063/1.4902390.
  • [20] Pedrotti, F. L. & Reynolds, D. C. Spin-orbit splitting in CdS:Se single crystals. Phys. Rev. 127, 1584-1586 (1962). https://doi.org/10.1103/PhysRev.127.1584.
  • [21] Ameri, M. et al. Structural and electronic properties calculations of BexZn1-xSe alloy. Mater. Sci. Semicond. Process. 10, 6-13 (2007). https://doi.org/10.1016/j.mssp.2007.01.003.
  • [22] Kim, K., Hart, G. L. W. & Zunger, A. Negative band gap bowing in epitaxial InAs/GaAs alloys and predicted band offsets of the strained binaries and alloys on various substrates. Appl. Phys. Lett. 80, 3105-3107 (2002). https://doi.org/10.1063/1.1470693.
  • [23] Singh, S. D. Determination of the optical gap bowing parameter for ternary Ni1-xZnxO cubic rocksalt solid solutions. Dalton Trans. 44, 14793-14798 (2015). https://doi.org/10.1039/C5DT02283E.
  • [24] Grundmann, M. The Physics of Semiconductors. An Introduction Including Devices and Nanophysics. (Springer, 2006). https://doi.org/10.1007/3-540-34661-9.
  • [25] Hernandez-Calderon, I. Optical Properties and Electronic Structure of Wide Band Gap II–VI Semiconductors. in II-VI Semiconductor Materials and their Applications (Ed. Tamargo, M. C) 145 (Taylor and Francis, 2002).
  • [26] Bernard, J. E. & Zunger, A. Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys. Rev. B 36, 3199-3228 (1987). https://doi.org/10.1103/PhysRevB.36.3199.
  • [27] Van Cong, H. 34.375% (33.72%)-maximal efficiencies, obtained in CdSe1-xSx, CdSe1-xTex-crystalline alloy junction solar cells at 300 K. Eur. J. Appl. Sci. Eng. Technol. 2, 150-174 (2024). https://doi.org/10.59324/ejaset.2024.2(2).11.
  • [28] Zafar, M. et al. Ab initio study of structural, electronic and elastic properties of CdSe1-xSx semiconductor. Sol. Energy 158, 63-70 (2017). https://doi.org/10.1016/j.solener.2017.09.034.
  • [29] Lau, P. C., Zhu, Z., Norwood, R. A., Mansuripur, M. & Peyghambarian, N. Thermally robust and blinking suppressed core/graded-shell Cd e/Cd e1-x x/Cd ‘giant’ multishell semi-conductor nanocrystals. Nanotechnology 24, 475705 (2013). https://doi.org/10.1088/0957-4484/24/47/475705.
  • [30] Junda, M. M. et al. Optical Properties of CdSe1-xSx and CdSe1-yTey Alloys and Their Application for CdTe Photovoltaics. in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) 3426-3429 (IEEE, 2017). https://doi.org/10.1109/PVSC.2017.8366483.
  • [31] Almohammedi, A., Ashour, A. & Shaaban, E. R. Structural and optical investigations of chalcogenide CdSe1-xSx thin films for optoelectronic applications. Chalcogenide Lett. 16, 113-122 (2019). https://chalcogen.ro/113_AlmohammediA.pdf.
  • [32] Van Cong, H. (14.82 %, 12.16 %, 26.55 %, or 23.69 %)-limiting highest efficiencies, respectively in n+(p+)-p(n) crystalline (X≡Ge,GaSb,CdTe, or CdSe)-junction solar cells, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion. SCIREA J. Phys. 8, 575-595 (2023). https://doi.org/10.54647/physics140591.
Uwagi
1. This research was supported by the National research foundation of Ukraine (project no. 2022.01/0163).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d362a5d-99eb-4544-a2a8-8abcd1f9f5fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.