PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evolution properties of multi-Gaussian Schell model beams propagating in uniaxial crystal orthogonal to the optical axis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytical formula for the multi-Gaussian Schell model is derived for the beam propagating in a uniaxial crystal orthogonal to the optical axis. The propagation properties of multi-Gaussian Schell model beams in a uniaxial crystal orthogonal to the optical axis is investigated by using the analytical formula. Some results are illustrated by numerical examples related to the propagation properties of multi-Gaussian Schell model beams. It is found that the propagation properties of the multi-Gaussian Schell model beams are very different from the propagation properties in the free space. They are closely related to the initial coherence and the ratio of the extraordinary and ordinary refractive indices. The results provide a way for studying the propagation properties of the multi-Gaussian Schell model beams in the uniaxial crystal orthogonal to the optical axis.
Czasopismo
Rocznik
Strony
19--34
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
autor
  • College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
autor
  • College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
autor
  • College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
autor
  • College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
Bibliografia
  • [1] COWAN D.C., RECOLONS J., ANDREWS L.C., YOUNG C.Y., Propagation of flattened Gaussian beams in the atmosphere: a comparison of theory with a computer simulation model, Proceedings of SPIE 6215, 2006, article 62150B.
  • [2] EYYUBOĞLU H.T., ARPALI Ç., BAYKAL Y., Flat topped beams and their characteristics in turbulent media, Optics Express 14(10), 2006, pp. 4196–4207.
  • [3] BAYKAL Y., EYYUBOĞLU H.T., Scintillation index of flat-topped Gaussian beams, Applied Optics 45(16), 2006, pp. 3793–3797.
  • [4] YANGJIAN CAI, Propagation of various flat-topped beams in a turbulent atmosphere, Journal of Optics A: Pure and Applied Optics 8(6), 2006, pp. 537–545.
  • [5] NISHI N., JITSUNO T., TSUBAKIMOTO K., MATSUOKA S., MIYANAGA N., NAKATSUKA M., Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target, Optical Review 7(3), 2000, pp. 216–220.
  • [6] COUTTS D.W., Double-pass copper vapor laser master-oscillator power-amplifier systems: generation of flat-top focused beams for fiber coupling and percussion drilling, IEEE Journal of Quantum Electronics 38(9), 2002, pp. 1217–1224.
  • [7] LI WANG, JIANHUA XUE, Efficiency comparison analysis of second harmonic generation on flattened Gaussian and Gaussian beams through a crystal CsLiB6O10 , Japanese Journal of Applied Physics, Part 1 41(12), 2002, pp. 7373–7376.
  • [8] WANG W., WANG P.X., HO Y.K., KONG Q., CHEN Z., GU Y., WANG S.J., Field description and electron acceleration of focused flattened Gaussian laser beams, Europhysics Letters 73(2), 2006, pp. 211–217.
  • [9] BOWERS M.S., Diffractive analysis of unstable optical resonator with super-Gaussian mirrors, Optics Letters 17(19), 1992, pp. 1319–1321.
  • [10] GORI F., Flattened gaussian beams, Optics Communications 107(5–6), 1994, pp. 335–341.
  • [11] YAJUN LI, Light beam with flat-topped profiles, Optics Letters 27(12), 2002, pp. 1007–1009.
  • [12] TOVAR A.A., Propagation of flat-topped multi-Gaussian laser beams, Journal of the Optical Society of America A 18(8), 2001, pp. 1897–1904.
  • [13] AMARANDE S.-A., Beam propagation factor and the kurtosis parameter of flattened Gaussian beams, Optics Communications 129(5–6), 1996, pp. 311–317.
  • [14] BORGHI R., SANTARSIERO M., VICALVI S., Focal shift of focused flat-topped beams, Optics Communications 154(5–6), 1998, pp. 243–248.
  • [15] BAGINI V., BORGHI R., GORI F., PACILEO A.M., SANTARSIERO M., AMBROSINI D., SPAGNOLO G.S., Propagation of axially symmetric flattened Gaussian beams, Journal of the Optical Society of America A 13(7), 1996, pp. 1385–1394.
  • [16] YANGJIAN CAI, QIANG LIN, Properties of a flattened Gaussian beam in the fractional Fourier transform plane, Journal of Optics A: Pure and Applied Optics 5(3), 2003, pp. 272–275.
  • [17] XIAOLING JI, LU B., Focal shift and focal switch of flattened Gaussian beams in passage through an aperture bifocal lens, IEEE Journal of Quantum Electronics 39(1), 2003, pp. 172–178.
  • [18] YANGJIAN CAI, QIANG LIN, Light beams with elliptical flat-topped profiles, Journal of Optics A: Pure and Applied Optics 6(4), 2004, pp. 390–395.
  • [19] BORGHI R., Elegant Laguerre–Gauss beams as a new tool for describing axisymmetric flattened Gaussian beams, Journal of the Optical Society of America A 18(7), 2001, pp. 1627–1633.
  • [20] YANGJIAN CAI, SAILING HE, Partially coherent flattened Gaussian beam and its paraxial propagation properties, Journal of the Optical Society of America A 23(10), 2006, pp. 2623–2628.
  • [21] BORGHI R., SANTARSIERO M., Modal decomposition of partially coherent flat-topped beams produced by multimode lasers, Optics Letters 23(5), 1998, pp. 313–315.
  • [22] YAN ZHANG, BIN ZHANG, QIAO WEN, Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media, Optics Communications 266(2), 2006, pp. 407–412.
  • [23] ALAVINEJAD M., GHAFARY B., Turbulence-induced degradation properties of partially coherent flat-topped beams, Optics and Lasers in Engineering 46(5), 2008, pp. 357–362.
  • [24] ALAVINEJAD M., GHAFARY B., RAZZAGHI D., Spectral changes of partially coherent flat topped beam in turbulent atmosphere, Optics Communications 281(8), 2008, pp. 2173–2178.
  • [25] BAYKAL Y., EYYUBOǦLU H.T., Scintillations of incoherent flat-topped Gaussian source field in turbulence, Applied Optics 46(22), 2007, pp. 5044–5050.
  • [26] XU GUANG HUANG, WANG M.R., CHANGYUAN YU, High-efficiency flat-top beam shaper fabricated by a nonlithographic technique, Optical Engineering 38(2), 1999, pp. 208–213.
  • [27] MILER M., AUBRECHT I., PALA J., Holographic Gaussian to flat-top beam shaping, Optical Engineering 42(11), 2003, pp. 3114–3122.
  • [28] TARALLO M.G., MILLER J., AGRESTI J., D’AMBROSIO E., DESALVO R., FOREST D., LAGRANGE B., MACKOWSKY J.M., MICHEL C., MONTORIO J.L., MORGADO N., PINARD L., REMILLEUX A., SIMONI B., WILLEMS P., Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry–Perot resonator, Applied Optics 46(26), 2007, pp. 6648–6654.
  • [29] LITVIN I.A., FORBES A., Intra-cavity flat-top beam generation, Optics Express 17(18), 2009, pp. 15891–15903.
  • [30] HAOTONG MA, ZEJIN LIU, PU ZHOU, XIAOLIN WANG, YANXING MA, XIAOJUN XU, Generation of flat-top beam with phase-only liquid crystal spatial light modulator, Journal of Optics 12(4), 2010, article 045704.
  • [31] FEI WANG, YANGJIAN CAI, Experimental generation of a partially coherent flat-topped beam, Optics Letters 33(16), 2008, pp. 1795–1797.
  • [32] SAHIN S., KOROTKOVA O., Light soureces generating far fields with tunable flat profiles, Optics Letters 37(14), 2012, pp. 2970–2972.
  • [33] KOROTKOVA O., SAHIN S., SHCHEPAKINA E., Multi-Gaussian Schell-model beams, Journal of the Optical Society of America A 29(10), 2012, pp. 2159–2164.
  • [34] JI CANG, XU FANG, XU LIU, Propagation properties of multi-Gaussian Schell-model beams through ABCD optical systems and in atmospheric turbulence, Optics and Laser Technology 50, 2013, pp. 65–70.
  • [35] SIEGMAN A.E., New developments in laser resonators, Proceedings of SPIE 1224, 1990, pp. 2–14.
  • [36] GORI F., SANTARSIERO M., SONA A., The change of width for a partially coherent beam on paraxial propagation, Optics Communications 82(3–4), 1991, pp. 197–203.
  • [37] XIAOLIANG CHU, BIN ZHANG, QIAO WEN, Generalized M2 factor of a partially coherent beam propagating through a circular hard-edged aperture, Applied Optics 42(21), 2003, pp. 4280–4284.
  • [38] SANTARSIERO M., GORI F., BORGHI R., CINCOTTI G., VAHIMAA P., Spreading properties of beams radiated by partially coherent Schell-model sources, Journal of the Optical Society of America A 16(1), 1999, pp. 106–112.
  • [39] BIN ZHANG, XIAOLIANG CHU, QIANG LI, Generalized beam-propagation factor of partially coherent beams propagating through hard-edged apertures, Journal of the Optical Society of America A 19(7), 2002, pp. 1370–1375.
  • [40] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5–6), 2003, pp. 263–267.
  • [41] BASTIAANS M.J., Wigner distribution function and its application to first-order optics, Journal of the Optical Society of America 69(12), 1979, pp. 1710–1716.
  • [42] LIU D.J., ZHOU Z.X., Wigner distribution function matrix of electromagnetic beams propagating through uniaxial crystals orthogonal to the optical axis, The European Physical Journal D 58(3), 2010, pp. 333–338.
  • [43] WEBER H., Propagation of higher-order intensity moments in quadratic-index media, Optical and Quantum Electronics 24(9), 1992, pp. S1027–S1049.
  • [44] MARTÍNEZ-HERRERO R., MEJÍAS P.M., Second-order spatial characterization of hard-edge diffracted beams, Optics Letters 18(19), 1993, pp. 1669–1671.
  • [45] MARTÍNEZ-HERRERO R., MEJÍAS P.M., ARIAS M., Parametric characterization of coherent, lowest-order Gaussian beams propagation through hard-edge apertures, Optics Letters 20(2), 1995, pp. 124–126.
  • [46] FEI WANG, YANGJIAN CAI, Second-order statistics of twisted Gaussian Schell-model beam in turbulent atmosphere, Optics Express 18(24), 2010, pp. 24661–24672.
  • [47] FRIBERG A.T., SUDOL R.J., Propagation parameters of Gaussian Schell-model beams, Optics Communications 41(6), 1982, pp. 383–387.
  • [48] SHIJUN ZHU, YANGJIAN CAI, M2-factor of a stochastic electromagnetic beam in a Gaussian cavity, Optics Express 18(26), 2010, pp. 27567–27581.
  • [49] SHIJUN ZHU, YANGJIAN CAI, KOROTKOVA O., Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam, Optics Express 18(12), 2010, pp. 12587–12598.
  • [50] GBUR G., WOLF E., The Rayleigh range of Gaussian Schell-model beams, Journal of Modern Optics 48(11), 2001, pp. 1735–1741.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d34a500-8412-4ce4-8b07-58fba73a73a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.