Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we design a parallel-twin convolutional neural network (PT-CNN) deep learning model and use the signal constellation diagram to realize the identification of six advanced optical modulation formats (QPSK, 4QAM, 8PSK, 8QAM, 16PSK, 16QAM) and signal-to-noise-ratio (SNR) estimation. The influence of PT-CNN with different layers and kernel sizes is investigated and the optimal network model is chosen. Simulation results demonstrate that the proposed method has the advantages of not requiring manual feature extraction, having the ability to clearly distinguish the six modulation formats with 100% accuracy when SNR of the received signal sequences is higher than 12 dB. In addition, the high-accurate SNR estimation is realized simultaneously without increasing additional system complexity.
Czasopismo
Rocznik
Tom
Strony
281--289
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- College of Information Engineering, North China University of Technology, Beijing 100144, China
autor
- College of Information Engineering, North China University of Technology, Beijing 100144, China
Bibliografia
- [1] CHEN Z., NIE J., ZHANG S., YANG Q., DAI X., DENG L., CHENG M., LIU D., 56-GB/s/λ C-band DSB IM/DD PAM-4 40-km SSMF transmission by employing a multiplier-free MLSE equalizer, Optics Express 30(7), 2022: 11275-11287. https://doi.org/10.1364/OE.444727
- [2] LI Z., DONG Y., WANG Y., LU C., A novel PSK-manchester modulation format in 10-Gb/s passive optical network system with high tolerance to beat interference noise, IEEE Photonics Technology Letters, 17(5), 2005: 1118-1120. https://doi.org/10.1109/LPT.2005.845655
- [3] ZIYADI M., MOHAJERIN-ARIAEI A., CHITGARHA M.R., CAO Y., KHALEGHI S., ALMAIMAN A., TOUCH J.D., PARASCHIS L., TUR M., LANGROCK C., FEJER M.M., WILLNER A.E., Optical channel de-aggregator of 30-Gbaud QPSK and 20-Gbaud 8PSK data using mapping onto constellation axes, [In] 2014 The European Conference on Optical Communication (ECOC), IEEE, 2014: 1-3. https://doi.org/10.1109/ECOC.2014.6964132
- [4] YOSHIDA M., KIMURA K., IWAYA T., KASAI K., HIROOKA T., NAKAZAWA M., Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz, Optics Express 27(20), 2019: 28952-28967. https://doi.org/10.1364/OE.27.028952
- [5] CHEN X., TANIZAWA K., WINZER P., DONG P., CHO J., FUTAMI F., KATO K., MELIKYAN A., KIM K.W., Experimental demonstration of a 4,294,967,296-QAM-based Y-00 quantum stream cipher template carring 160-Gb/s 16-QAM signals, Optics Express 29(4), 2021: 5658-5664. https://doi.org/10.1364/OE.405390
- [6] WEI W., MENDEL J.M., Maximum-likelihood classification for digital amplitude-phase modulations, IEEE Transactions on Communications 48(2), 2000: 189-193. https://doi.org/10.1109/26.823550
- [7] WU H.-C., SAQUIB M., YUN Z., Novel automatic modulation classification using cumulant features for communications via multipath channels, IEEE Transactions on Wireless Communications 7(8), 2008: 3098-3105. https://doi.org/10.1109/TWC.2008.070015
- [8] ZHANG Q., CHEN J., ZHOU H., ZHANG J., LIU M., A simple artificial neural network based joint modulation format identification and OSNR monitoring algorithm for elastic optical networks, [In] 2018 Asia Communications and Photonics Conference (ACP), IEEE, 2018: 1-3. https://doi.org/10.1109/ACP.2018.8595848
- [9] BORKOWSKI R., ZIBAR D., CABALLERO A., ARLUNNO V., MONROY I.T., Stokes space-based optical modulation format recognition for digital coherent receivers, IEEE Photonics Technology Letters 25(21), 2013: 2129-2132. https://doi.org/10.1109/LPT.2013.2282303
- [10] SAIF W.S., RAGHEB A.M., NEBENDAHL B., ALSHAWI T., MAREY M., ALSHEBEILI S.A., Performance investigation of modulation format identification in super-channel optical networks, IEEE Photonics Journal 14(2), 2022: 8514910. https://doi.org/10.1109/JPHOT.2022.3148798
- [11] WANG D., ZHANG M., LI Z., LI J., FU M., CUI Y., CHEN X., Modulation format recognition and OSNR estimation using CNN-based deep learning, IEEE Photonics Technology Letters 29(19), 2017: 1667-1670. https://doi.org/10.1109/LPT.2017.2742553
- [12] CHEN T.S.R., MENG K., LAU A.P.T., DONG Z.Y., Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms, IEEE Photonics Technology Letters 22(22), 2010: 1665-1667. https://doi.org/10.1109/LPT.2010.2078804
- [13] LI S., ZHOU J., HUANG Z., SUN X., Modulation format identification based on an improved RBF neural network trained with asynchronous amplitude histogram, IEEE Access 8, 2020: 59524-59532. https://doi.org/10.1109/ACCESS.2019.2962749
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d2eac98-d286-45db-b927-1c1ab3a96eaf