PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka propagacji fali ciśnieniowej podczas procesu skraplania czynników chłodniczych R404A i R134a w minikanałach rurowych w warunkach periodycznych zakłóceń hydrodynamicznych

Identyfikatory
Warianty tytułu
EN
Characterization of the pressure wave propagation during the condensation proces of R404A and R134a refrigerants in pipe mini-channels in the conditions of periodic hydrodynamic disturbances
Języki publikacji
PL
Abstrakty
PL
W procy podjęto próbą modelowania propagacji fali ciśnieniowej wywołanej niestabilnością hydrodynamiczną o charakterze periodycznym podczas procesu skraplania czynników chłodniczych R404A / R734a w minikanałach rurowych. W tym celu zastosowano jednorodny, dwupłytowy model oparty na równaniach bilansu: masy, padu. Model ten ujmuje złożoność przepływów wielofazowych. Wymianą ciepła pomiędzy fazami w procesie skraplania obliczono wykorzystując jednowymiarową postać równania Fouriera. Uwzględniono również zależność określającą międzyfazowe napięcia powierzchniowe przepływu w minikanałach.
EN
In the present paper, an attempt was undertaken to model the propagation of a pressure wave triggered off with hydrodynamic instabilities of a periodic nature in the condensation process of the R404A and R134a refrigerants in pipe mini-channels. A homogenous transient two-fluid model was used based on balance equations. The model presents the complexity of multi-phase flows, The heat exchange between the phases in the condensation process was calculated using the one-dimensional form of Fourier's equation. The dependence which defines the interfacial the drag forces for the flow in mini-channels was also taken into consideration. The results of the numerical calculations were verified with experimental investigations and satisfactory compliance was obtained.
Rocznik
Strony
18--26
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Politechnika Koszalińska, Wydział Mechaniczny, Katedra Energetyki
autor
  • Politechnika Koszalińska, Wydział Mechaniczny, Katedra Energetyki
Bibliografia
  • [1] J.L. Xu, T.K. Chen, Acoustic wave prediction in flowing steam-water two-pha-se mixture, International Journal of Heat and Mass Transfer 43 (7) (2000) 1079-1088.
  • [2] J.L. Xu, T.K. Chen, Acoustic wave prediction in flowing steam-water two-phase mixture, Journal of Thermal Science 3 (3) (1994) 147-154.
  • [3] Y. Li , C. Li, E. Chen, Y. Ying, Pressure wave propagation characteristics in a two-phase flow pipeline for liquid-propellant rocket, Aerospace Science and Technology 15(2011)453-464.
  • [4] X.X. Xu, J. Gong, A united model for predicting pressure wave speeds in oil and gas two-phase pipe flows, Journal of Petroleum Science and Engineering 60 (3-4)(2008)150-160.
  • [5] H.U. Helmholtz, Verhandlungen der Naturhistorisch-Medizinischen Vereins zu Heidelberg, Bd III, (16) (1863).
  • [6] G. Kirchhoff, Ueber den einflufs der warmeleitung in einem gase auf die schallbewegung, Ann. Phys. Chem. (134) (1868) 177-193.
  • [7] Lord Rayleigh, Theory of Sound, Volume II. London: The Macmillan Company, secondo edition, (1896) 319-326.
  • [8] A.S. Iberall, Attenuation of oscillatory pressures in instrument lines Journal of Research of the National Bureau of Standards (45) (1950) 85-108.
  • [9] C.P. Rohmann and E. C. Grogan, On the dynamics of pneumatic transmission lines. Transactions of the American Society of Mechanical Engineers (79) (1957)853-874.
  • [10] S. Tsao, Numerical solutions of transients in pneumatic networks-transmission line calculations, Journal of Applied Mechanics, Transactions of the American Society of Mechanical Engineers (35) (1968) 588-595.
  • [11] C. Zwikker, C. W. Kosten, Sound Absorbing Materials, Elsevier, chap. 2, (1949), Amsterdam.
  • [12] M.R. Stinson, The propagation of plane sound waves in narrow and wide circular tubes and generalization to uniform tubes of arbitrary cross-sectional shape, Journal Acoustic Soc. Am. 89 (2) (1991).
  • [13] R.C. Mercredy, U. Hamilton, The effects of nonequilibrium heat, mass and momentum transfer on two-phase speed, Int. J. Heat Mass Transfer (15), (19721,61-72.
  • [14] D.Y. Hsieh, M. S. Plesset, On the propagation of sound in a liquid containing gas bubbles, Physic Fluid (4), (1961), 970-975.
  • [15] M. Ishii and I. Kataoka 1980 Interfacial transfer in annular dispersed flow, Argonne National Laboratory, Report CONP-820811-2 (1980).
  • [16] F.J. Moody, A pressure pulse model for two-phase critical flow and sonic velocity, J. Heat Transfer (1969) 371-384.
  • [17] D.F. Darcy, On acoustic propagation and critical mass flux in two-phase flow, J. Heat Transfer(1971)413-421.
  • [18] G.B. Wallis, One-dimensional two-phase flow, McGraw-Hill, New York (1969), 318-322.
  • [19] G. Rudinger and A. Chang, Analysis of Nonsteddy Two-Phase Flow, Physics of Fluids (7) (1964) 1747-1754.
  • [20] R.W. Lyczkowski, Transient propagation behavior of two-phase flow equations, 15th National Heat Transfer Conference, San Francisco, August 10-13, (1975).
  • [21] A.E. Ruggles, H.A. Scarton, R J. Lahey, Investigation of the propagation of pressure perturbations in bubbly air/water flows, Journal of Heat Transfer, Transactions of the ASM E 110 (2) (1988) 494-499.
  • [22] K.H. Ardron, R.B. Duffey, Acoustic wave propagation in a flowing liquid –vapor mixture, Int. J. Multiphase Flow, (4), (1977) 303-322.
  • [23] L.Y. Cheng, D.A. Drew, R.T. Lahey Jr, An analysis of wave propagation in bubbly two-component, two-phase flow, J. Heat Transfer (107) (1985) 402-408.
  • [24] N.-N. Chung, W. Liu, Baushei Pei, A model for sound velocity in a two-phase air-water bubbly flow, Nucl. Technol. 99 (1992) 80-89.
  • [25] J.J. Ginoux, Two-Phase Flow and Heat Transfer with Application to Nuclear Reactor Problems, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, (1978). [26] Riukin, Aleksandrov, Kremenevskaya, Thermodynamic Derivations for Water and Steam, McGraw-Hill, New York, (1987).
  • [27] S.W. Rienstr, A. Hirschberg, An Introduction to Acoustics, Eindhoven University of Technology, (2011).
  • [28] Chawla, T.C. and H. Ishii, Two-fluid Model of Two-phase Flow in a Pin Bundle of a Nuclear Reactor, Argonne National Laboratory Report ANL/RAS/LWR 79-5(1979).
  • [29] S.M. Ghiaasiaan, Two-phase flow, boiling, and condensation in conventional and miniature systems. Cambridge University Press (2008) 151-154, 483-485.
  • [30] S. Sugawara, Droplet deposition and entrainment modeling based on the three-fluid model, Proc. 3rd Int. Top. Meet. On Nuclear Power Plant Thermal Hydraulics and Operations, Seoul, (1988).
  • [31] T.M. Bandhauer, A. Agarwal, A. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels. Journal of Heat Transfer (128) (2006) 1050-1059.
  • [32] J.W. Park, D.A. Drew, R.T. Lahey, The analysis of void wave propagation in adiabatic mono-dispersed bubbly two-phase flows using an ensemble averaged two-fluid model, International Journal of Multiphase Flow 24 (7) (1998)1205-1244.
  • [33] Z. Bilicki, Własności dyspersyjnego modelu nierównowagowego w przepływach para - ciecz, Wyd. IMP PAN Gdańsk 342 (1217) (1991), 3-21.
  • [34] W. Kuczyński H. Charun, Influence of void fraction of the condensation characteristics of R404A refrigerant in minichannels the conditions of periodical instability, The 6th International Conference on Transport Phenomena in Multiphase Systems, Ryn, Poland, (2011), 293-300.
  • [35] W. Kuczyński, H. Charun, Experimental investigations into the impact of the void fraction on the condensation characteristics of R134a refrigerant in minichannels under conditions of periodic instability, Archives of Thermodynamics, Vol. 32, no. 2 (2011), 21-37.
  • [36] C.L Feldman, S.E. Nydick, R.P. Kokernak, The speed of sound in single component two-phase fluids: theoretical and experimental, Int. Symp. Two-Phase Systems, Haifa Israel (1971) Session 6 Paper 7.
  • [37] R.P. Kokernak, C.L. Feldman, Velocity of sound in two-phase flow of R12, ASHRAEJ (14) (1972) 35-38.
  • [38] P.G. Kroeger, Application of a non-equilibrium drift flux model to two-phase blow-down analysis, Paper presented to OECD/NEA Specialists Meeteing on Transient Two-Phase Flow, Toronto, Canada (1976).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d2793b7-8461-4f4c-809a-1cae0a1b8802
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.