PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene oxide - potential use in wood protection based on a review of antibacterial and fungicide properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene oxide - potential use in wood protection based on a review of antibacterial and fungicide properties. Graphene oxide is a material that has been generating interest among researchers in recent years. Due to its properties, it can be used in many scientific and industrial fields. Not all of its properties are significantly known, making it a potential subject of research in many different aspects. The topic of this article is to assess the potential applications of graphene oxide in the field of wood science industry. Based on the literature, the antibacterial and fungicidal properties are characterised. The fungicidal effect of graphene oxide, mainly in plant protection, leads to consideration of the potential use of this material in protection against wood-destroying fungi.
PL
Tlenek grafenu – potencjalne wykorzystanie w ochronie drewna na podstawie przeglądu właściwości antybakteryjnych i fungicydowych. Tlenek grafenu jest materiałem, który w ostatnich latach budzi zainteresowanie wśród badaczy. Ze względu na swoje właściwości może być wykorzystywany w wielu dziedzinach nauki i przemysłu. Nie wszystkie jego właściwości są istotnie poznane, przez co może stanowić on przedmiot badań w wielu różnych aspektach. Tematem tego artykułu jest ocena możliwości potencjalnych zastosowań tlenku grafenu w dziedzinie drzewnictwa. Na podstawie literatury przedmiotu dokonano charakterystyki właściwości antybakteryjnych i fungicydowych. Fungicydowe oddziaływanie tlenku grafenu, głównie w ochronie roślin, prowadzi do rozważań nad potencjalnym zastosowaniem tego materiału w ochronie przed grzybami, powodującymi destrukcję drewna.
Słowa kluczowe
Twórcy
autor
  • Department of Wood Science and Wood Preservation, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Poland
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Poland
  • Department of Wood Science and Wood Preservation, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Poland
  • Department of Wood Science and Wood Preservation, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
  • 1. ADITYA S., VARSHNEY M., NANDA S.S., SHIN H.J., KIM N., YI D.K., CHAE K-W., WON S.O., 2018: Structural, electronic structure and antibacterial properties of graphene oxide nano-sheets, Chemical Physics Letter nr 698; 85-92.
  • 2. AKHAVAN O., GHADERI E., 2010: Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano nr. 4; 5731–5736.
  • 3. ALEKSANDRZAK M., MIJOWSKA E., 2015: Graphene and Its Derivatives for Energy Storage, Graphene Materials (eds A. Tiwari and M. Syväjärvi).
  • 4. BRODIE B.C., 1859: On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. A nr. 149; 249-25956.
  • 5. CHEN J., PENG H., WANG X., SHAO F., & YUAN Z., HAN H-Y., 2013: Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale nr 6; 1879-1889.
  • 6. CISZEWSKI M., MIANOWSKI A., 2013: Badania nad procesem utleniania grafitu mieszaninami utleniającymi w kwasach nieorganicznych, CHEMIK nr. 67, 4; 267-274.
  • 7. DAN S., BAGHERI H., SHAHIDIZADEH A., HASHEMIPOUR H., 2023: Performance of graphene Oxide/SiO2 Nanocomposite-based: Antibacterial Activity, dye and heavy metal removal, Arabian Journal of Chemistry nr 16 issue 2; 104450).
  • 8. DIDEYKIN et al., 2011: Diamond & Related Materials nr 20; 105-108 107.
  • 9. GHULAM A. N., DOS SANTOS O. A. L., HAZEEM L., PIZZORNO BACKX B., BOUOUDINA M., BELLUCCI S., 2022: Graphene Oxide (GO) Materials—Applications and Toxicity on Living Organisms and Environment, Journal of Functional Biomaterials nr 13, issue 2; 77.
  • 10. GUO L., LI X., LI W., GOU C., ZHENG M., ZHANG Y., CHEN Z., HONG Y., 2022: High sensitive humidity sensor based on MoS2/graphene oxide quantum dot nanocomposite, Materials Chemistry and Physics nr 287; 126146).
  • 11. HU W., PENG C., LUO W., LV M., LI X., LI D., HUANG Q., FAN C., 2010: Graphene Based Antibacterial Paper, American Chemical Society (ACS) Nano nr 4, issue 7;4317–4323.
  • 12. HUMMERS W. S., OFFEMAN R. E., 1958: Preparation of graphitic oxide, J. Am. Chem. Soc. nr. 80; 1339.
  • 13. HUSSAINA. K., SUDIN I., BASHEER U. M., YUSOP M. Z. M., 2019: A review on graphene-based polymer composite coatings for the corrosion protection of metals, Corrosion Reviews nr. 37, issue 4; 343–363).
  • 14. IKRAM M., BARI M. A., BILAL M., JAMAL F., NABGAN W., HAIDER J., HAIDER A., NAZIR G., KHAN A. D., KHAN K., TAREEN A. K., KHAN Q., ALI G., IMRAN M., CAFFREY E., MAQBOOL M., 2023: Innovations in the synthesis of graphene nanostructures for bio and gas sensors, Biomaterials Advances nr 145; 213234).
  • 15. KANG S. B., SANGER A., JEONG M. H., BAIK J. M., CHOI K. J., 2023: Heterogeneous stacking of reduced graphene oxide on ZnO nanowires for NO2 gas sensors with dramatically improved response and high sensitivity, Sensors and Actuators B: Chemical nr 379; 133196.
  • 16. KEDZIORA A, GERASYMCHUK Y, SROKA E, BUGLA-PŁOSKOŃSKA G, DOROSZKIEWICZ W, RYBAK Z, HRENIAK DC, WILGUSZ R, STREK WA., 2013: Wykorzystanie materiałów opartych na cześciowo redukowanym tlenku grafenu z nanoczastkami srebra jako srodków bakteriostatycznych i bakteriobójczych, Polim Med nr 43(3);129-34.
  • 17. KRISHNAMOORTHY K., UMASUTHAN N., MOHAN R., LEE J., KIM S. J., 2012: Investigation of the Antibacterial Activity of Graphene Oxide Nanosheets, Sci. Adv. Mater nr. 4, 11; 1-7.
  • 18. KRUK T., 2012: Cienkie wielowarstwowe powłoki przewodzące zawierające tlenek grafenu/grafen, LAB Laboratoria, Aparatura, Badania nr.17/4; 12-17.
  • 19. KRZEMIŃSKA S., 2015: Aplikacja nanocząstek grafenu do kompozytów polimerowych z przeznaczeniem na wyroby ochronne, Przetwórstwo tworzyw nr 3; 247-250.
  • 20. LEE J., KIM J., KIM S., MIN D.-H., 2016: Biosensors based on graphene oxide and its biomedical application, Advanced Drug Delivery Reviews nr 105; 275–287.
  • 21. LIANG T., HOU W., JI J., HUANG Y., 2023: Wrinkled reduced graphene oxide humidity sensor with fast response/recovery and flexibility for respiratory monitoring, Sensors and Actuators A: Physical nr 350; 114104).
  • 22. LIU S., ZENG T. H., HOFMANN M., BURCOMBE E., WEI J., JIANG R., KONG J., CHEN Y., 2011: Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Ox- idative Stress, ACS Nano nr. 5 (9); 6971-6980.
  • 23. MANNOV E., SCHMUTZLER H., CHANDRASEKARAN S., VIETS C., BUSCHHORN S., TÖLLE F., MÜLHAUPT R., SCHULTE K., 2013: Improvement of compressive strength after 57impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide, Composites Science and Technology nr 87; 36–41).
  • 24. MIKUŁa J., ŁACH M., 2012: Potencjalne zastosowania glinokrzemianów pochodzenia wulkanicznego. Czasopismo Techniczne, Mechanika R. 109, z. 8-M; 109-122.
  • 25. NGUYEN H. N., CHAVES-LOPEZ C., OLIVEIRA R. C., PAPARELLA A.,RODRIGUES D. F., 2019: Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger, Carbon nr.143; 419-429.
  • 26. OU L., SONG B., LIANG H. ET AL. 2016: Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms, Part Fibre Toxicol nr. 13; 57.
  • 27. PARK S., CHOI KS., KIM S., GWON Y, KIM J., 2020: Graphene Oxide-Assisted Promotion of Plant Growth and Stability, Nanomaterials (Basel) nr 15 10(4); 758.
  • 28. PARK H.B., YOON H.W., CHO Y.H., 2016: Graphene Oxide Membrane for Molecular Separation, Graphene Oxide (eds A.M. Dimiev and S. Eigler).
  • 29. PATIL TV., PATEL DK., DUTTA SD., GANGULY K., LIM K-T., 2021: Graphene Oxide Based Stimuli-Responsive Platforms for Biomedical Applications, Molecules nr. 26(9); 2797.
  • 30. PENG F., WANG X., ZHANG W., SHI X., CHENG C., HOU W., LIN X., XIAO X., LI J., 2022: Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens, Nanomaterials nr 12, issue 7; 1112.
  • 31. PORRO S., ROPPOLO I., 2016: Field-Effect Transistors, Sensors and Transparent Conductive Films, Graphene Oxide (eds A.M. Dimiev and S. Eigler).
  • 32. RASHI., 2023: Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications, Ceramics International nr 49, issue 1; 40–47.
  • 33. ROMISZEWSKA A., BOMBALSKA A., 2019: Antybakteryjne właściwości grafenu i jego pochodnych, Biuletyn WAT. Vol. LXVIII, nr 4; 69-84.
  • 34. SAHU S. N., SOREN S., CHAKRABARTY S., SAHU R., 2020: Theoretical Study on Graphene Oxide as a Cancer Drug Carrier, Monoelements; 73–86.
  • 35. SINGH G., SHARMA S., SINGH A., DIKSHA, SUSHMA, PAWAN, SUMAN, MOHIT, PRIYANKA., 2022: Graphene oxide functionalized organosilane based fluorescent biosensor for detecting guanine in human urine, Materials Chemistry and Physics nr 287; 126130.
  • 36. SMĘDOWSKI Ł., MUZYKA R., 2013: Grafen - metody otrzymywania a zastosowanie i właściwości, Karbo nr 2; 128-136.
  • 37. STAUDENMAIER L., 1898: Verfahren zur Darstellung der Graphitsaure Ber. Dtsch. Chem. Ges. nr 31; 1481-1487.
  • 38. SUN X., LIU Z., WELSHER K., ROBINSON J. T., GOODWIN A., ZARIC S., DAI H., 2008: Nano-graphene oxide for cellular imaging and drug delivery, Nano Research nr 1(3); 203– 212.
  • 39. SUNDARAM R. S., 2014: Chemically derived graphene, Graphene; 50–80.
  • 40. TIAN T., SHI X., CHENG L., LUO Y., DONG Z., GONG H., … LIU Z., 2014: Graphene Based Nanocomposite As an Effective, Multifunctional, and Recyclable Antibacterial Agent, ACS Applied Materials & Interfaces nr 6(11); 8542–8548.
  • 41. WANG X., PENG F., CHENG C., CHEN L., SHI X., GAO X., LI J., 2021: Synergistic Antifungal Activity of Graphene Oxide and Fungicides against Fusarium Head Blight In Vitro and In Vivo, Nanomaterials 11(9); 2393.
  • 42. WANG H., LI J., LIANG H., HUANG X., MENG N., ZHOU N., 2023: Silver nanoparticles based on sulfobutylether-β-cyclodextrin functionalized graphene oxide nanocomposite: Synthesized, characterization, and antibacterial activity, Colloids and Surfaces B: Biointerfaces nr 221; 113009.
  • 43. WANG Q., WANG J., LU C., LIU B., ZHANG K., LI C., 2015: Influence of graphene oxide additions on the microstructure and mechanical strength of cement, New Carbon Materials nr 30, issue 4; 349–35658.
  • 44. WANG X., XIE H., WANG Z., HE K., 2019: Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites, Colloids and Surfaces B: Biointerfaces nr 173; 632–638).
  • 45. WANG X., XIE H., WANG Z., HE K., JING D., 2019: Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect, Environmental Science: Nano nr 6, issue 1; 75–84.
  • 46. WOJUCKI M., NASIŁOWSKA B., BOMBALSKA A., DJAS M., BABUL T., 2018: Wpływ tlenku grafenu i zredukowanego tlenku grafenu na wybrane właściwości strukturalne wodorozcieńczalnej żywicy akrylowej, Inżynieria Powierzchninr 24 (3); 55-59.
  • 47. XIE J., MING Z., LI H., YANG H., YU B., WU R., LIU X., BAI Y., YANG S-T., 2016: Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium, Chemosphere nr 151; 324-331.
  • 48. XU C., CUI A., XU Y., FU X., 2013: Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification, Carbon nr 62; 465–471.
  • 49. XU D., LIANG G., QI Y., GONG R., ZHANG X., ZHANG Y., LIU B., KONG L., DONG X., LI Y., 2022: Enhancing the Mechanical Properties of Waterborne Polyurethane Paint by Graphene Oxide for Wood Products, Polymers nr 14, issue 24; 5456.
  • 50. YABAŞ E., BIÇER E., ALTINDAL A., 2023: Novel reduced graphene oxide/zinc phthalocyanine and reduced graphene oxide/cobalt phthalocyanine hybrids as high sensitivity room temperature volatile organic compound gas sensors, Journal of Molecular Structure nr1271; 134076.
  • 51. YANG H., FENG S., MA Q., MING Z., BAI Y., CHEN L., YANG S-T., 2018: Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus Phanerochaete chrysosporium, RSC nr 8; 5026-5033.
  • 52. YANG X., TU Y., LI L., SHANG S., TAO X., 2010: Well-Dispersed Chitosan/Graphene Oxide Nanocomposites, ACS Applied Materials & Interfaces nr 2, issue 6; 1707–1713.
  • 53. YANG Y., ZHANG R., ZHANG X., CHEN Z., WANG H., LI P. C. H., 2022: Effects of Graphene Oxide on Plant Growth: A Review, Plants nr 11, issue 21; 2826).
  • 54. ZHANG X., CAO H., WANG J., LI F., ZHAO J., 2022: Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo, Microorganisms nr 10, issue 10; 1994.
  • 55. ZHANG X., YIN J., PENG C., HU W., ZHU Z., LI W., FAN C., HUANG Q., 2011: Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration, Carbon nr 49, issue 3; 986–995.
  • 56. ZHAO L., WANG W., FU X., LIU A., CAO J., LIU J., 2022: Graphene Oxide, a Novel Nanomaterial as Soil Water Retention Agent, Dramatically Enhances Drought Stress Tolerance in Soybean Plants, Frontiers in Plant Science nr 13; 810905.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d26996d-74f5-4e29-b097-15768e7fce70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.