PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure field produced by some finite amplitude sources

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 2 nd EAA International Symposium on Hydroacoustics 24-27 May 1999, Gdańsk-Jurata POLAND
Języki publikacji
EN
Abstrakty
EN
Pressure field of finite amplitude sources is examined in the paper. Detailed measurements of nonlinear distortion within beams radiated by plane and focused circular pistons are presented. Comparison of experimental results are made with numerical calculations based on the nonlinear parabolic wave equation (KZK) with the equivalent boundary condition adequate to the actual boundary condition. Special attention is paid to impact that the pressure distribution at the radiating surface has on the phenomena occurring in the vicinity of the source. Focused beam is examined over a distance extending up to post local region. Investigation is carried out with various pressure amplitude at the source in pseudo continuous wave conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
237--246
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Naval Academy, ul. Smidowicza 71, 81-919 Gdynia, POLAND
Bibliografia
  • 1. I. Aanonsen, T. Barkve, J. Naze Tjøtta, S. Tjøtta, Distortion and harmonie generation in the nearfield of a finite amplitude sound beam, J. Acoust. Soc. Am., 75, pp. 749-768, (1984).
  • 2. M. A. Averkiou and M. F. Hamilton, Measurements of harmonie generation in a focused finite-ampIitude sound beam, J. Acoust. Soc. Am., 98, pp. 3439-3442,(1995).
  • 3. M. A Averkiou and M. F. Hamilton, Nonlinear distortion of short pulses radiated by plane and focused circular pistons, J. Acoust. Soc.Am., 102, pp. 2539-2548,(1997).
  • 4. A. C. Baker, Nonlinear pressure fields due to focused circular apertures, J. Acoust. Soc. Am., 91, pp. 713-717,(1992).
  • 5. A. C. Baker, K. Anastasiadis, V. F. Humprey, The nonlinear pressure field of a plane circular piston: Theory and experiment, J. Acoust. Soc. Am., 84, pp. 1483-1487,(1988).
  • 6. A. C. Baker, A. M. Berg, A. Sahin, J. Naze Tjøtta, The nonlinear pressure field of a plane, rectangular apertures: Experimental and theoretical results, J. Acoust. Soc. Am., 97, pp. 3510-3517,(1995).
  • 7. A. C. Baker, V. F. Humprey, Distortion and high-frequency generatlen due to nonlinear propagation of shórt ultrasonic pulses from a plane circular piston, J. Acoust. Soc. Am., 92, pp. 1699-1705, (1992).
  • 8. N. S. BakhvaIov, Ya. M. Zhileikin, E. A. Zabolofskaya, Nonlinear Theory of Sound Beams, Moscow: Nauka, 1982.
  • 9. D. Cathignol, J. Y. Chapelon, High energy ultrasound therapy, Part I and Part II, Advances in nonlinear acoustics, World Scientifie, London, pp. 21-35, (1993).
  • 10. J. Dybedal, TOPAS: Parametric end-fire array used in offshore applications, Advances in nonlinear acoustics, World Scientific,London, pp. 264-269,(1993).
  • 11. H. Endo, Calculation of nonlinearity parameter for seawater, J. Acoust. Soc. Am., 76, pp. 274-277,(1984).
  • 12. L. Filipczyński,J. Etienne, M. Pieehocki, An attempt to reconstruct the lithofripter shock wave pulse in kidney: Possible temperature effects, Med. Biol, 18, pp. 569-577, (1992).
  • 13. L. Filipczyński,T. Kujawska, R. Tymkiewicz, J. Wójcik, Nonlinear and linear propagation of diagnostie ultrasound puIses, Ultrasound in Med. and Biol., 25, pp. 285-299, (1999).
  • 14. L. Germain, J. D. N. Cheeke, Generation and detection of high order harmonics in liquids using a scanning acoustic microscopy, J. Acoust. Soc, Am., 83, pp. 942-949, (1988).
  • 15. X. F. Gong, X. Z. Liu, Acoustical nonlinearity parameter and its medical applications, Advances in nonlinear acoustics, World Scientific, London, pp. 353-357,(1993).
  • 16. H. Hobaek and B. Ystad, Experimental and numerical investigation of shockwave propagation in the post focal region of a focused sound field, ACUSTICA - Acta Acustica, 83, pp. 978-986, (1997).
  • 17. F. Ingenito, A. O. Williams Jr., Calculation of second harmonic generation in a piston beam, J. Acoust. Soc. Am., 49, pp. 319-328, (1971).
  • 18. E. Kozaczka, G. Grelowska, Nonlinearity parameter BIA of the low-salinity seawater, Arch. Acoust., 19, pp. 259-270, (1994).
  • 19. Y. S. Lee, M. F. Hamilton, Time-domain modeling of pulsed finite amplitude sound beams, J. Acoust. Soc. Am., 97, pp. 906-917, (1995).
  • 20. S.-W. Li, Z.-X. Xu, The harmonie nearfield of a narrow strip transducer, Nonlinear acoustics in perspective, Nanjing University Press, pp. 200-205, (1996).
  • 21. B. G. Lucas and T. G. Muir, The field of a focusing source, J. Acoust. Soc. Am., 72, pp. 1289- 1296, (1982).
  • 22. B. G. Lueas and T. G. Muir, Field of a finiteamplirude focusing source, J. Acoust. Soc. Am. 74, pp. 1522-1528, (1983).
  • 23. B. E. McDonald, W. A Kuperman, Time domain formulation for pulse propagation including nonlinear behaviour at a caustic, J. Acoust. Soc. Am., 81, pp. 1406-1417, (1985).
  • 24. J. A TenCate, An experimental investigation of the nonlinear pressure field produced by a piane circular piston, J. Acoust. Soc. Am., 94, pp. 1084-1089, (1993).
  • 25. J. N. Tjøtta, S. Tjøfta, Nonlinear equations of acoustics, with application to parametric acoustic arrays, J. Acoust. Soc. Am., 69, pp. 1644-1652, (1981).
  • 26. J. N. Tjøtta, S. Tjøtta, E. H. Vefring, Propagation and interaction of two collimated finite amplitude sound beams, J. Acoust. Soc. Am. 88, pp. 2859-2870 (1990).
  • 27. E. H. Vefriag, J. N. Tjøtta, S. Tjøta, Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beams, J. Acoust. Soc. Am., 89, pp. 1017-1027, (1991).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d2027c3-1765-47cf-ac79-add4bb79c4ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.