Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of experimental and numerical analysis of the influence of the non-axisymmetric pulse shaper position on recorded wave signals in the split Hopkinson pressure bar experiment are presented. The paper focuses attention on the problem of wave signal disturbances caused by a bending wave resulting from non-axisymmetric pulse shaper positions and, moreover, different shaper thickness, striker impact velocities and Wheatstone bridge configurations. The obtained results of analyses indicate that the effect of the non-axisymmetric pulse shaper position may be neglected if deviation from the bar axis does not exceed 20%.
Czasopismo
Rocznik
Tom
Strony
873—886
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechatronics and Aviation, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechatronics and Aviation, Warsaw, Poland
Bibliografia
- 1. Bekker A., Cloete T.J., Chinsamy-Turan A., Nurick G.N., Kok S., 2015, Constant strain rate compression of bovine cortical bone on the split-Hopkinson pressure bar, Materials Science and Engineering C, 46, 1, 443-449
- 2. Chen W., Luo H., 2004, Dynamic compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment, Experimental Mechanics, 44, 3, 295-299
- 3. Chen W., Song B., 2011, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Berlin, Springer
- 4. Chen W., Song B., Frew D.J., Forrestal M.J., 2003, Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar, Experimental Mechanics, 43, 1, 201-23
- 5. Cloete T.J., van der Westhuizen A., Kok S., Nurick G.N., 2009, A tapered striker pulse shaping technique for uniform strain rate dynamic compression of bovine bone, EDP Sciences, 1, 901-907
- 6. Courant R., Friedrichs K.O., Lewy H., 1967, Ueber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen (1928), 100, 32-74. Translated as: On the partial difference equations of mathematical physics, IBM Journal of Research and Development, 11, 215-234
- 7. Ellwood S., Griffiths L.J., Parry D.J., 1982, Materials testing at high constant strain rates, Journal of Physics, E, 15, 280-282
- 8. Fischer K.A., Wriggers P., 2006, Mortar based frictional contact formulation for higher order interpolations using the moving friction cone, Computer Methods in Applied Mechanics and Engineering, 195, 5020-5036
- 9. Foley J.R., Dodson J.C., McKinion C.M., 2010, Split Hopkinson bar experiments of preloaded interfaces, Proceedings of the IMPLAST 2010 Conference
- 10. Follansbee P.S., 1985, The Hopkinson Bar in Mechanical Testing and Evaluations, ASM Handbook, 9th ed. ASM Int., Materials Park Ohio
- 11. Frantz C.E., Follansbee P.S., 1984, Experimental techniques with the split Hopkinson pressure bar, Proceedings of the 8th International Conference on High Energy Rate Fabrication, San Antonio, Texas, 229-236
- 12. Frew D.J., Forrestal M.J., Chen W., 2002, Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar, Experimental Mechanics, 42, 1, 93-106
- 13. Frew D.J., Forrestal M.J., Chen W., 2005, Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar, Experimental Mechanics, 45, 186-195
- 14. Grazka M., Janiszewski J., 2012, Identification of Johnson-Cook equation constants using finite element method, Engineering Transactions, 60, 215-223
- 15. Hallquist J.O., 2006, Ls-Dyna. Theoretical Manual, California, Livermore Software Technology Corporation
- 16. Hsiao H.M., Daniel I.M., 1998, Dynamic compressive behavior of thick composite materials, Experimental Mechanics, 38, 172-180
- 17. Kariem M.A., Beynon J.H., Ruan D., 2012, Misalignment effect in the split Hopkinson pressure bar technique, International Journal of Impact Engineering, 47, 60-70
- 18. Kolsky H., 1949, An investigation of the mechanical properties of materials at very high rates of strain, Proceedings of the Physical Society Section B, 62, 11, 676-700
- 19. Konyukhov A., Schweizerhof K., 2013, Computational Contact Mechanics, Geometrically Exact Theory for Arbitrary Shaped Bodies, Berlin, Springer
- 20. Li W., Xua J., 2009, Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100 mm-diameter split Hopkinson pressure bar, Materials Science and Engineering A, 513-514, 145-153
- 21. Lu Y.B., Li Q.M., 2010, Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials, International Journal of Protective Structures, 1, 3, 363-390
- 22. Naghdabadi R., Ashrafia M. J., Arghavanic J., 2012, Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test, Materials Science and Engineering A, 539, 285-293
- 23. Naik N. K., Yernamma P., 2008, Mechanical behaviour of acrylic under high strain rate tensile loading, Polymer Testing, 27, 504-512
- 24. Nemat-Nasser S., Isaacs J.B., Starrett J.E., 1991, Hopkinson techniques for dynamic recovery experiments, Proceedings of the Royal Society, 435, 371-391
- 25. Ozel T., Sima M., 2010, Finite element simulation of high speed machining Ti-6Al-4V alloy using modified material models, Transactions of NAMRI/SME, 38, 49-56
- 26. Panowicz R., 2013, Analysis of selected contact algorithms types in terms of their parameters selection, Journal of KONES Powertrain and Transport, 20, 1, 263-268
- 27. Ramirez H., Rubio-Gonzalez C., 2006, Finite-element simulation of wave propagation and dispersion in Hopkinson bar test, Materials and Design, 27, 36-44
- 28. Rule W.K., Jones S.E., 1998, A revised form for the Johnson-Cook strength model, International Journal of Impact Engineering, 21, 8, 609-624
- 29. Shemirani A. B., Naghdabadi R., Ashrafi M.J., 2016, Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus, Construction and Building Materials, 125, 326-336
- 30. Song B., Chen W., 2004, Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops, Experimental Mechanics, 44, 6, 622-627
- 31. Song B., Chen W., 2005, Split Hopkinson pressure bar techniques for characterizing soft materials, Latin American Journal of Solids and Structures, 2, 113-152
- 32. Steinberg D.J., 1996, Equation of state and strength properties of selected materials, LLNL Report, UCRL-MA-106439
- 33. Vecchio K.S., Jiang F., 2007, Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing, Metallurgical and Materials Transactions A, 38, 2655-2665
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d1c3ad1-f773-4f6a-8740-d05f7286249c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.