PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Resonant Green's function for Euler-Bernoulli beams by means of the Fredholm Alternative Theorem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the Green's function for a uniform thin beam which is assumed to obey the Euler-Bernoulli theory at resonant condition. The beam under study has a simple support at one end and a sliding support at the other. First, the differential equation governing the free vibration of the beam is obtained in the frequency domain using the Fourier transform. Then, we try to find the corresponding Green's function of the problem. But a contradiction occurs due to the special properties of resonance. In order to overcome this hurdle, the Fredholm Alternative Theorem is utilized. Remarkably, it is shown that this theorem, by adding a particular term to the Green's function, can remedy this problem and the modified Green's function is consequently established. Moreover, the deformation function of the beam is found in an integral equation form. Some diagrams and tables conclude this study.
Rocznik
Strony
55--67
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
autor
  • Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
autor
  • Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Bibliografia
  • [1] Xu M., Cheng D., A new approach to solving a type of vibration problem, J. Sound Vibrat. 1994, 177, 565-571.
  • [2] Mohamad A.S., Tables of Green’s function for the theory of beam vibrations with general intermediate appendages, Int. J. Solids Structures 1994, 31, 93-102.
  • [3] Kukla S., Application of Green’s functions in frequency analysis of Timoshenko beams with oscillators, J. Sound Vibrat. 1997, 205, 355-393.
  • [4] Foda M.A., Abduljabbar Z., A dynamic Green function formulation for the response of a beam structure to a moving mass, J. Sound Vibrat. 1998, 210, 295-306.
  • [5] Abu-Hilal M., Forced vibration of Euler-Bernoulli beams by means of dynamic Green function, J. Sound Vibrat. 2003, 267, 191-207.
  • [6] Failla G., Santini A., On Euler-Bernoulli discontinuous beam solutions via uniform-beam Green's function, Int. J. Solids Structures 2007, 44, 7666-7687.
  • [7] Failla G., Closed-form solutions for Euler-Bernoulli arbitrary discontinuous beams, Arch. Appl. Mech. 2011, 81, 605-628.
  • [8] Azizi A., Saadatpoor M., Mahzoon M., Using spectral element method for analyzing continuous beams and bridges subjected to a moving load, Appl. Math. Model 2012, 36, 3580-3592.
  • [9] Rao S.S., Vibration of Continuous Systems, John Wiley and Sons, U.S. 2007.
  • [10] Korn G.A., Korn T.M., Mathematical Handbook for Scientists and Engineers, second ed., McGraw-Hill, U.S. 1968.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d181ae1-9b7e-4d53-9df1-81f7f48d18c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.