PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Lean Robotics Approach to the Scheduling of Robotic Adhesive Dispensing Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern implementations of industrial robots require the use of extensive knowledge and novel concepts. To bring real benefits, robotized processes must be analysed in detail. One can now observe an increasing use of lean robotics, a concept that is primarily intended to simplify processes and eliminate inefficient activities. This paper deals with industrial robot task scheduling in the adhesive dispensing process. The first part of the paper presents the modern concept of production process robotisation and reviews the literature on industrial robot task scheduling. After that, the problem of robotic adhesive dispensing on the electronic components of a printed circuit board (PCB) is presented. Another section of the paper describes the scheduling of effective and supporting tasks of the robot in the analysed process with the use of alternative dispatching rules. The determination of a schedule that is optimal in terms of the defined objective made it possible to discuss the results and reach valid conclusions. The study has confirmed that modern concepts are useful for simplifying robotic production processes.
Twórcy
  • Department of Production Computerisation and Robotisation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
  • 1. Berga J., Reinharta G. An Integrated Planning and Programming System for Human-Robot-Cooperation, Procedia CIRP. 2017; 63: 95–100.
  • 2. Dawande M., Geismar H.N., Sethi S.P., Sriskandarajah C. Sequencing and scheduling in robotic cells: Recent developments. Journal of Scheduling. 2005; 8: 387–426.
  • 3. Sobaszek Ł., Gola A., Świć A. Kierunki rozwoju robotyki w aspekcie projektowania współczesnych systemów produkcyjnych, Directions of robotics development in the aspect of design of modern production systems. Tworzywa Sztuczne w Przemyśle. 2021; 2: 42–47. [in Polish]
  • 4. Sobaszek Ł., Świć A. Scheduling the Process of Robot Welding of Thin-Walled Steel Sheet Structures under Constraint. Applied Sciences. 2021; 11(12): 1–13.
  • 5. Ijeoma W.M., Faisal T., Al-Assadi H.M.A.A., Iwan M. Implementation of Industrial Robot for Painting Applications. Procedia Engineering. 2012; 41: 1329–1335.
  • 6. Mohsin I., He K., Li Z., Du R. Path planning under force control in robotic polishing of the complex curved surfaces. Applied Sciences. 2019; 9: 5489.
  • 7. Bouchard S. Lean Robotics: A Guide to Making Robots Work in Your Factory. Samuel Bouchard, 2017.
  • 8. Driouach L., Zarbane K., Beidouri Z. Literature review of Lean manufacturing in small and medium-sized enterprises. International Journal of Technology. 2019, 10(5).
  • 9. Brissi S.G., Chong O.W., Debs L., Zhang J. A review on the interactions of robotic systems and lean principles in offsite construction. Engineering, Construction and Architectural Management. 2021; 29(1): 383–406.
  • 10. Zanlongo S.A., Abodo F., Long P., Padir T., Bobadilla L. Multi-robot scheduling and path-planning for non-overlappingoperator attention. In: Proceedings of the Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, USA. 2018, 87–94.
  • 11. Behrens J.K., Stepanova K., Babuska R. Simultaneous task allocation and motion scheduling for complex tasks executed by multiple robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France. 2020, 11443–1144.
  • 12. Shabtay D., Arviv K. Optimal robot scheduling to minimize the makespan in a three-machine flowshop environment with job-independent processing times. Applied Mathematical Modelling. 2016; 40: 4231–4247.
  • 13. King R.E., Hodgson T.J., Chafee F.W. Robot task scheduling in a flexible manufacturing cell. IIE Transactions. 1993; 25: 80–87.
  • 14. Gultekin H., Akturk M.S., Karasan O.E. Scheduling in a three-machine robotic flexible manufacturing cell. Computers & Operations Research. 2007; 34: 2463–2477.
  • 15. Zacharia P.T., Xidias E.K., Aspragathos N.A. Task scheduling and motion planning for an industrial manipulator. Robotics and Computer-Integrated Manufacturing. 2013; 29: 449–462.
  • 16. Baizid K., Meddahi A., Yousnadj A., Chellali R., Khan H., Iqbal J. Robotized task time scheduling and optimization based on Genetic Algorithms for non redundant industrial manipulators. In: Proceedings of the 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings, Timisoara, Romania 2014.
  • 17. Yuan Y., Xu H., Yang, J. A hybrid harmony search algorithm for the flexible job shop scheduling problem. Applied Soft Computing. 2013; 13(7): 3259–3272.
  • 18. Sharma P., Jain A. Performance analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times: Simulation approach. CIRP Journal of Manufacturing Science and Technology. 2015, 10: 110–119.
  • 19. Kim T., Kim Y. W., Cho H. Dynamic production scheduling model under due date uncertainty in precast concrete construction. Journal of Cleaner Production. 2020; 257: 120527.
  • 20. Danilczuk W., Gola A., Grznár P. Job Scheduling Algorithm for a Hybrid MTO–MTS Production Process. IFAC-PapersOnLine. 2022; 55(2): 451–456.
  • 21. Tereshchuk V., Stewart J., Bykov N., Pedigo S., Devasia S., Banerjee A.G. An efficient scheduling algorithm for multi-robot task allocation in assembling aircraft structures. IEEE Robotics and Automation Letters. 2019; 4(4): 3844–3851.
  • 22. Focant G., Fontaine B., Steinicke L., Joudrier L. A. Robotics Task Scheduler–TAPAS. In: Tokhi M.O., Virk G.S., Hossain M.A., editors. Climbing and Walking Robots. Berlin: Springer; 2006.
  • 23. Zhang J., Meng Q., Feng X., Shen H. A 6-DOF robot-time optimal trajectory planning based on an improved genetic algorithm. Robotics and Biomimetics. 2018; 5: 3.
  • 24. Śmigiel S., Zungor F., Purtul H., Inaloz I. Task scheduling algorithms for multi robot environment. Zeszyty Naukowe Telekomunikacja i Elektronika. 2014; 18(263): 33–45.
  • 25. Zanlongo S.A., Abodo F., Long P., Padir T., Bobadilla L. Multi-robot scheduling and path-planning for non-overlapping operator attention. In: Proceedings of the Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, USA, 2018, 87–94.
  • 26. Ericsson M., Nylén P. A look at the optimization of robot welding speed based on process modelling. Welding Journal. 2007; 86(8): 238–244.
  • 27. Caldeira R.H., Gnanavelbabu, A. A simheuristic approach for the flexible job shop scheduling problem with stochastic processing times. Simulation. 2021, 97, 215–236.
  • 28. Das S.D., Bain V., Rakshit P. Energy optimized robot arm path planning using differential evolution in dynamic environment. In: Proceedings of the Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, 1267–1272.
  • 29. Martins C. Robotic Process Automation: A Lean Approach to RPA. 2018.
  • 30. Hoffmann A., Angerer A., Ortmeier F., Vistein M., Reif W. Hiding Real-Time: A new Approach for the Software Development of Industrial Robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, 2009, 2108–2113.
  • 31. Castelli K., Zaki A.M.A., Dmytriyev Y., Carnevale M., Giberti H. A Feasibility Study of a Robotic Approach for the Gluing Process in the Footwear Industry. Robotics. 2021; 10(1): 6.
  • 32. Wang N., Liu J., Wei S., Zhang X. A Vision Location System Design of Glue Dispensing Robot. In: Liu H., Kubota N., Zhu X., Dillmann R., editors. Intelligent Robotics and Applications. Lecture Notes in Computer Science. Cham: Springer, 2015.
  • 33. Rudawska A., Abdel W., Szabelski J., Miturska I., Doluk E. The strength of rigid and flexible adhesive joints at room temperature and after thermal shocks. In: Abdel Wahab M, editor. Proceedings of 1st International Conference on Structural Damage Modelling and Assessment (SDMA 2020). Springer. 2021; 229–241.
  • 34. Rudawska A., Miturska I., Szabelski J., Skoczylas A., Droździel P., Bociąga E., Madleňák R., Kasperek D., Experimental research and statistic analysis of polymer composite adhesive joints strength. Journal of Physics: Conference Series. 2017; 842: 012074.
  • 35. Printed Circuit Board [CAD model]. GRABCAM Community. 2022. Available from: https://grabcad.com/library/printed-circuit-board-3.
  • 36. Alatartsev S. Robot Trajectory Optimization for Relaxed Effective Tasks [dissertation]. Magdeburg (DE): Otto von Guericke University, 2015.
  • 37. Huang Z., Zhuang Z., Cao Q., Lu Z., Guo L., Qin W. A survey of intelligent algorithms for open shop scheduling problem. Procedia CIRP. 2019; 83: 569–574.
  • 38. Sobaszek Ł., Gola A., Kozłowski E. Job-shop scheduling with machine breakdown prediction under completion time constraint. Annals of Computer Science and Information Systems. 2018; 15: 437–440.
  • 39. Knosala R. Zastosowania metod sztucznej inteligencji w inżynierii produkcji, Applications of artificial intelligence methods in production engineering. Wydawnictwa Naukowo-Techniczne, 2002. [in Polish].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d17a067-bc6b-4881-ab35-87ce1d87efc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.