Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose new data driven score rank tests for univariate symmetry around a known center.We apply both Schwarz-type and recently introduced data driven penalty selection rules. Some key asymptotic results regarding the test statistics are given and some asymptotic optimality properties proved. In an extensive simulation study, we compare the empirical behaviour of these tests to tests found in the recent literature to be powerful. We show that, for a broad range of asymmetric distributions, data driven tests have stable power, which is comparable to their competitors for typical alternatives and much greater for some atypical alternatives.
Czasopismo
Rocznik
Tom
Strony
323--358
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] A. Bakshaev, Nonparametric tests based on N-distances, Lituanian Math. J. 48 (2008), pp. 368-379.
- [2] K. Behnen and G. Neuhaus, Rank Tests with Estimated Scores and Their Application, Teubner, Stuttgart 1989.
- [3] D. Cassart, M. Hallin, and D. Paindaveine, Optimal detection on Fechner-asymmetry, J. Statist. Plann. Inference 138 (2008), pp. 2499-2525.
- [4] W.-H. Cheng and N. Balakrishnan, A modified sign test for symmetry, Comm. Statist. Simulation Comput. 33 (2004), pp. 703-709.
- [5] S. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest - Academic Press, New York 1981.
- [6] K. A. Doksum, G. Fenstad, and R. Aaberge, Plots and tests for symmetry, Biometrika 64 (1977), pp. 473-487.
- [7] G. R. Ducharme and T. Ledwina, Efficient and adaptive nonparametric test for the two-sample problem, Ann. Statist. 31 (2003), pp. 2036-2058.
- [8] R. L. Eubank, V. N. LaRiccia, and R. B. Rosenstein, Test statistics derived as components of Pearson’s phi-squared distance measure, J. Amer. Statist. Assoc. 82 (1987), pp. 816-825.
- [9] J. Fan, Test of significance based on wavelet thresholding and Neyman’s truncation, J. Amer. Statist. Assoc. 91 (1996), pp. 674-688.
- [10] M. Freimer, G. Kollia, G. S. Mudholkar, and C. T. Lin, A study of the generalized Tukey lambda family, Comm. Statist. Theory Methods 17 (1988), pp. 3547-3567.
- [11] Z. Govindarajulu, Two sided confidence limits for P(Y < X) based on normal samples of X and Y , Sankhyā Ser. B 29 (1967), pp. 35-40.
- [12] J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives, Ann. Math. Statist. 39 (1968), pp. 325-346.
- [13] J. Hájek and Z. Šidák, Theory of Rank Tests, Academia, Prague 1967.
- [14] T. Inglot, Generalized intermediate efficiency of goodness of fit tests, Math. Methods Statist. 8 (1999), pp. 487-509.
- [15] T. Inglot, Intermediate efficiency by shifting alternatives and evaluation of power, J. Statist. Plann. Inference 140 (2010), pp. 3263-3281.
- [16] T. Inglot, Asymptotic behaviour of linear rank statistics for the two-sample problem, Probab. Math. Statist. 32 (2012), pp. 93-116.
- [17] T. Inglot and A. Janic, How powerful are data driven score tests for uniformity, Appl. Math. (Warsaw) 36 (2009), pp. 375-395.
- [18] T. Inglot, W. C. M. Kallenberg, and T. Ledwina, Asymptotic behavior of some bilinear functionals of the empirical process, Math. Methods Statist. 2 (1993), pp. 316-336.
- [19] T. Inglot, W. C. M. Kallenberg, and T. Ledwina, Data driven smooth tests for composite hypotheses, Ann. Statist. 25 (1997), pp. 1222-1250.
- [20] T. Inglot, W. C. M. Kallenberg, and T. Ledwina, Vanishing shortcoming of data driven Neyman’s tests, in: Asymptotic Methods in Probability and Statistics: A Volume in Honour of Miklós Csörgő, North-Holland, 1998, pp. 811-829.
- [21] T. Inglot and T. Ledwina, On probabilities of excessive deviations for Kolmogorov-Smirnov, Cramér-von Mises and chisquare statistics, Ann. Statist. 18 (1990), pp. 1491-1495.
- [22] T. Inglot and T. Ledwina, Moderately large deviations and expansions of large deviations for some functionals of weighted empirical processes, Ann. Probab. 21 (1993), pp. 1691-1705.
- [23] T. Inglot and T. Ledwina, Asymptotic optimality of data-driven Neyman’s tests for uniformity, Ann. Statist. 24 (1996), pp. 1982-2019.
- [24] T. Inglot and T. Ledwina, Intermediate approach to comparison of some goodness-of-fit tests, Ann. Inst. Statist. Math. 53 (2001), pp. 810-834.
- [25] T. Inglot and T. Ledwina, Towards data driven selection of a penalty function for data driven Neyman tests, Linear Algebra Appl. 417 (2006), pp. 124-133.
- [26] A. Janic-Wróblewska, Data driven rank test for univariate symmetry, Technical Report No. I18/98/P-020, Institute of Mathematics, Wrocław University of Technology.
- [27] A. Janic-Wróblewska, W. C. M. Kallenberg, and T. Ledwina, Detecting positive quadrant dependence and positive function dependence, Insurance Math. Econom. 34 (2004), pp. 467-487.
- [28] A. Janic-Wróblewska and T. Ledwina, Data driven rank test for two-sample problem, Scand. J. Statist. 27 (2000), pp. 281-297.
- [29] W. C. M. Kallenberg and T. Ledwina, Consistency and Monte Carlo simulation of a data driven version of smooth goodness-of-fit tests, Ann. Statist. 23 (1995), pp. 1594-1608.
- [30] W. C. M. Kallenberg and T. Ledwina, On data driven Neyman’s tests, Probab. Math. Statist. 15 (1995), pp. 409-426.
- [31] W. C. M. Kallenberg and T. Ledwina, Data driven smooth tests when the hypothesis is composite, J. Amer. Statist. Assoc. 92 (1997), pp. 1094-1104.
- [32] W. C. M. Kallenberg and T. Ledwina, Data driven rank tests for independence, J. Amer. Statist. Assoc. 94 (1999), pp. 285-301.
- [33] J. A. Koziol, On a Cramér-von Mises type statistic for testing symmetry, J. Amer. Statist. Assoc. 75 (1980), pp. 161-167.
- [34] T. Ledwina, Data-driven version of Neyman’s smooth test of fit, J. Amer. Statist. Assoc. 89 (1994), pp. 1000-1005.
- [35] T. Ledwina and G. Wyłupek, Two-sample test against one-sided alternatives, Scand. J. Statist. 39 (2012), pp. 358-381.
- [36] T. P. McWilliams, A distribution-free test for symmetry based on a runs statistic, J. Amer. Statist. Assoc. 85 (1990), pp. 1130-1133.
- [37] R. Modarres and J. L. Gastwirth, A modified runs test for symmetry, Statist. Probab. Lett. 31 (1996), pp. 107-112.
- [38] R. Modarres and J. L. Gastwirth, Hybrid test for the hypothesis of symmetry, J. Appl. Stat. 25 (1998), pp. 777-783.
- [39] J. Neyman, ‘Smooth test’ for goodness of fit, Skand. Aktuarietidskr. 20 (1937), pp. 149-199.
- [40] A. I. Orlov, On testing the symmetry of distributions, Theory Probab. Appl. 7 (1972), pp. 357-361.
- [41] E. D. Rothman and M. Woodroofe, A Cramér-von Mises type statistic for testing symmetry, Ann. Math. Statist. 43 (1972), pp. 2035-2038.
- [42] G. Sansone, Orthogonal Functions, Interscience, New York 1959.
- [43] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), pp. 461-464.
- [44] I. H. Tajuddin, Distribution-free test for symmetry based on Wilcoxon two-sample test, J. Appl. Stat. 21 (1994), pp. 409-415.
- [45] O. Thas, J. C. W. Rayner, and D. J. Best, Tests for symmetry based on the one-sample Wilcoxon signed rank statistic, Comm. Statist. Simulation Comput. 34 (2005), pp. 957-973.
- [46] G. Wyłupek, Data driven k-sample tests, Technometrics 52 (2010), pp. 107-123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d1645f1-bd83-4d11-b964-0ff974ec66f2