PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the SPH Approximations in ModelingWaterWaves

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an examination of approximation aspects of the Smoothed Particle Hydrodynamics (SPH) in modeling the water wave phenomenon. Close attention is paid on consistency of the SPH formulation and its relation with a correction technique applied to improve the method accuracy. The considerations are confined to flow fields within finite domains with a free surface and fixed solid boundaries with free slip boundary conditions. In spite of a wide application of the SPH method in fluid mechanics, the appropriate modeling of the boundaries is still not clear. For solid straight line boundaries, a natural way is to use additional (virtual, ghost) particles outside the boundary and take into account mirror reflection of associated field variables. Such a method leads to good results, except for a vicinity of solid horizontal bottoms where, because of the SPH approximations in the description of pressure, a stratification of the fluid material particles may occur. In order to illustrate the last phenomenon, some numerical tests have been made. These numerical experiments show that the solid fluid bottom attracts the material particles and thus, to prevent these particles from penetration into the bottom, a mutual exchange of positions of real and ghost particles has been used in a computation procedure.
Słowa kluczowe
Twórcy
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Koscierska 7, 80-328 Gdansk, Poland
Bibliografia
  • Ataie-Ashtiani B., Shobeyri and Farhadi L. (2008) Modified incompressible SPH method for simulating free surface problems, Fluid Dynamics Research, 40, 637–661.
  • Belytschko T., Krongauz Y., Dolbow J. and Gerlach C. (1998) On the completeness of meshfree particle methods, Inter. J. for Numerical Methods in Engineering, 43, 785–819.
  • Bonet J. and Lok T.-S. L. (1999) Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Comp. Methods in Appl. Mech. Engrg., 180, 97–115.
  • Colagrossi A. and Landrini M. (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comp. Phys., 191 (2), 448–475.
  • Dalrymple R. A. and Rogers B. D. (2006) Numerical modeling of water waves with the SPH Method, Coastal Engineering, 53, 141–147.
  • Liu G. R. and Liu M. B. (2009) Smoothed Particle Hydrodynamics: A Mesh-free Particle Method,World Scientific, Singapore.
  • Lo E. Y. M. and Shao S. (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Applied Ocean Research, 24, 275–286.
  • Monaghan J. J. (1992) Smoothed Particle Hydrodynamics, Annual Rev. Astrophysics, 30, 543–574.
  • Monaghan J. J. (2005) Smoothed Particle Hydrodynamics, Reports on Progress in Physics, 68, 1703–1759.
  • Monaghan J. J. and Kajtar J. B. (2009) SPH particle boundary forces for arbitrary boundaries, Computer Physics Communications, 180, 1811–1820.
  • Morris J. P., Fox P. J. and Zhu Y. (1997) Modeling Low Reynolds Number Incompressible Flows Using SPH, J. Computational Physics, 136, 214–226.
  • Staroszczyk R. (2010) Simulation of Dam-Break Flow by a Corrected Smoothed Particle Hydrodynamics Method, Archives of Hydro-Engineering and Environmental Mechanics, 57 (1). 61–79.
  • Toro E. F. (1997) Rieman Solvers and Numerical Methods for Fluid Dynamics, Springer –Verlag, Berlin, Heidelberg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d162818-a9d1-4f97-9afc-f3d00371c5b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.