PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Studying the effect of some parameters on the stability of shallow tunnels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several factors have crucial impact on the serviceability of underground openings including: the quality of rock mass; the presence of rock joints and their geometrical properties; the state of in-situ stress ratio; the depth below surface and opening geometry. This paper only investigates the effect of two parameters on the stability of underground shallow tunnels, namely: the presence of rock joints in the rock mass matrix and the shape of the excavation. A series of two-dimensional elasto-plastic finite-element models has been constructed using rock-soil, RS2D, software. Consequently, parametric stability analysis has been conducted for three different tunnel shapes (e.g. circular, square and horseshoe) with/without joint inclusion. Four reference points have been assigned in the tunnel perimeter (e.g. back, sidewalls and floor) to monitor the state of stress-displacement in the rock mass around them. The results indicate that the weak performance of a tunnel opening occurs with a square-shaped opening and when joints exist in the rock mass. In addition, the normal stress along joints sharply drops in the vicinity of a tunnel opening. Moreover, the direction of shear stress is reversed. Thus, it causes inward shear displacement.
Rocznik
Strony
20--33
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Mining and Metallurgical Engineering Dept., Faculty of Engineering, University of Assiut, Assiut, 71516, Egypt
autor
  • Mining and Petroleum Engineering Dept., Faculty of Engineering, University of Al-Azhar, Qena, Egypt
autor
  • Energy and Resource Engineering Dept., College of Engineering, Chonnam National University, South Korea
Bibliografia
  • 1. Abdellah, W. R. E. (2015). Numerical modelling stability analyses of haulage drift in deep underground mines. Journal of Engineering Science, 43(1), 71-81.
  • 2. Abdellah, W., Mitri, H. S., Thibodeau, D., & Moreau-Verlaan, L. (2012). Stochastic evaluation of haulage drift unsatisfactory performance using random Monte- Carlo simulation. International Journal of Mining and Mineral Engineering, 4(1), 63-87. https://doi.org/10.1504/IJMME.2012.048000.
  • 3. Barton, N. R. (1972). A Model study of rock-joint deformation. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 9(5), 579-582. https://doi.org/10.1016/0148-9062(72)90010-1.
  • 4. Berisavljević, Z., Berisavljević, D., Čebašek, V., & Rakić, D. (2015). Slope stability analyses using limit equilibrium and strength reduction methods. GraCevinar, 67(10), 975-983. https://doi.org/10.14256/JCE.1030.2014.
  • 5. Brady, B. H. G. (1977). An analysis of rock behaviour in an experimental stoping block at the Mount Isa Mine, Queensland, Australia. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 14(2), 59-66. https://doi.org/10.1016/0148-9062(77)90197-8.
  • 6. Brady, B., & Lorig, L. (1988). Analysis of rock reinforcement using finite difference methods. Computers and Geotechnics, 5(2), 123-149. https://doi.org/10.1016/0266-352X(88)90042-0.
  • 7. Eberhardt, E. (2001). Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face. International Journal of Rock Mechanics and Mining Sciences, 38(4), 499-518. https://doi.org/10.1016/S1365-1609(01)00017-X.
  • 8. Elshamy, E. A., Attia, G., Fawzy, H., & Abdel Hafez, K. (2013). Behavior of different shapes of twin tunnels in soft clay soil. International Journal of Engineering and Innovative Technology, 2(7), 297-302.
  • 9. Ghorbani, K., Zahedi, M., & Asaadi, A. (2015). Effects of statistical distribution of joint trace length on the stability of tunnel excavated in jointed rock mass. International Journal of Mining and Geological Engineering, 49(2), 289-296.
  • 10. Goodman, R. E., Heuze, F. E., & Bureau, G. J. (1972). On modeling techniques for the study of tunnels in jointed rock. In Conf. Proc. of the 14th U.S. Symposium on rock mechanics (USRMS), 11-14 June, University Park, Pennsylvania USA. https://www.onepetro.org/conference-paper/ARMA-72-0441.
  • 11. Goodman, R. E., & Shi, G. H. (1985). Block theory and its application to rock engineering. Englewood Cliffs, NJ: Prentice-Hall, Inc.
  • 12. Hao, Y. H., & Azzam, R. (2005). The plastic zones and displacements around underground openings in rock masses containing a fault. Tunnelling and Underground Space Technology, 20(1), 49-61. https://doi.org/10.1016/j.tust.2004.05.003.
  • 13. Jeon, S., Kim, J., Seo, Y., & Hong, Ch (2004). Effect of a fault and weak plane on the stability of a tunnel in rock e a scaled model test and numerical analysis. International Journal of Rock Mechanics and Mining Sciences, 41(1), 658-663. https://doi.org/10.1016/j.ijrmms.2004.03.115.
  • 14. Jethwa, J. L., Dube, A. K., Singh, B., & Singh, B. (1984). Squeezing problems in Indian tunnels. In Conf. Proc. of the first international conference on case histories in geotechnical engineering. USA: Missouri University of Science and Technology. Retrieved January 2018 from: http://scholarsmine.mst.edu/icchge/1icchge/1icchge-them-7/7.
  • 15. Jiang, Y., Tanabashi, Y., Li, B., & Xiao, J. (2006). Influence of geometrical distribution of rock joints on deformational behavior of underground opening. Tunnelling and Underground Space Technology, 21(5), 485-491. https://doi.org/10.1016/j.tust.2005.10.004.
  • 16. Jia, P., & Tang, C. A. (2008). Numerical study on failure mechanism of tunnel in jointed rock mass. Tunnelling and Underground Space Technology, 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001.
  • 17. Kirsch, G. (1898). Die theorie der elastizitat und die bedϋrfnisse der festigkcitslchre. Veit Ver Deut Ing, 42, 797-807.
  • 18. Kulatilake, P. H. S. W., Qiong, W., Zhengxing, Y., & Fuxing, J. (2013). Investigation of stability of a tunnel in a deep coal mine in China. International Journal of Mining Science and Technology, 23(4), 579-589. https://doi.org/10.1016/j.ijmst.2013.07.018.
  • 19. Ladanyi, B. (1974). Use of the long-term strength concept in the determination of ground pressure on tunnel linings. In Conf. Proc. of the advances in rock mechanics, proceedings of the third congress, international society of rock mechanics, Denver. National Academy of Sciences.
  • 20. Madkour, H. (2012). Parametric analysis of tunnel behavior in jointed rock. Ain Shams Engineering Journal, 3(2), 97-103. https://doi.org/10.1016/j.asej.2012.01.002.
  • 21. Maleki, M. R., Mahyar, M., & Meshkabadi, K. (2011). Design of overall slope angle and analysis of rock slope stability of chadormalu mine using empirical and numerical methods. Engineering, 3, 965-971. https://doi.org/10.4236/eng.2011.39119.
  • 22. Martin, C. D., Kaiser, P. K., & McCreath, D. R. (1999). Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Canadian Geotechnical Journal, 36, 136-151.
  • 23. Mitri, H. S. (2007). Assessment of horizontal pillar burst in deep hard rock mines. International Journal of Risk Assessment and Management, 7(5), 695-707. https://doi.org/10.1504/IJRAM.2007.014094.
  • 24. Panjia, M., Koohsari, H., Adampira, M., Alielahi, H., & Marnani, J. A. (2016). Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 480-488. https://doi.org/10.1016/j.jrmge.2016.01.006.
  • 25. Piyal,W. P. L., & Konietzky, H. H. (2016). Geometrical properties of rock joints and their effects on rock mechanical behaviour. Retrieved 19 December 2016 from: https://tu-freiberg.de/fakult3/gt/feme/e-book/13_Geometrical_properties_of_rock_joints_and_their_effects_on_rock_mechanical_behaviour.pdf.
  • 26. Raju, G. D. (2013). Methodology for the design of dynamic rock supports in burst prone ground. Ph.D. Thesis. Montreal, Canada: McGill University.. Retrieved August 2013 from: http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1517032365593-227.
  • 27. Saini, G. S., Dube, A. K., & Singh, B. (1989). Severe tunneling problems in young Himalayan rocks for deep underground opening. In Conf. Proc. of the ISRM international symposium. Pau, France. Retrieved January 2018 from: https://search.spe.org/i2kweb/SPE/doc/onepetro:0A09479E/.
  • 28. Sheorey, P. R. (1997). Empirical rock failure criteria. Taylor & Francis. Soren, K., Budi, G., & Sen, P. (2014). Stability analysis of open pit slope by finite difference method. International Journal of Renewable Energy Technology, 3(5), 326-334.
  • 29. Yeung, M. R., & Leong, L. L. (1997). Effects of joint attributes on tunnel stability. International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 348. https://doi.org/10.1016/S1365-1609(97)00286-4. e341-348.e318.
  • 30. Zhang, Y., & Mitri, H. S. (2008). Elastoplastic stability analysis of mine haulage drift in the vicinity of mined stopes. International Journal of Rock Mechanics and Mining Sciences, 45(4), 574-593. https://doi.org/10.1016/j.ijrmms.2007.07.020.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d162226-33a5-4dd3-ac88-179f9e8bb80f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.