PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and properties of polyacrylonitrile/polystyrene and carbon nanoparticle-based nanocomposite foams

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, novel polyacrylonitrile/polystyrene (PAN/PS) blend has been prepared and reinforced with carbon nanoparticle to form polyacrylonitrile/polystyrene/carbon nanoparticle (PAN/PS/CNP) nanocomposite foam. Acid-functional carbon nanoparticle (0.1-3 wt.%) was used as nano-reinforcement for PAN/PS blend matrix. 2’-azobisisobutyronitrile was employed as foaming agent. The PAN/PS/CNP nanocomposite foams have been tested for structure, morphology, mechanical properties, thermal stability, non-flammability, water uptake, and toxic ion removal. Field-emission scanning electron microscopy and transmission electron microscopy exposed unique nanocellular morphology owing to physical interaction between the matrix and functional CNP. PAN/PS/CNP 0.1 Foam with 0.1 wt.% nanofiller had compression strength, modulus, and foam density of 41.8 MPa, 22.3 GPa, and 0.9 mgcm−3, respectively. Nanofiller loading of 3wt.% (PAN/PS/CNP 3 Foam) considerably enhanced the compression strength, modulus, and foam density as 68.2 MPa, 37.7 GPa, and 1.9 mgcm−3, respectively. CNP reinforcement also enhanced the initial weight loss and maximum decomposition temperature of PAN/PS/CNP 3 Foam to 541 and 574 ºC, relative to neat foam (T0 = 411 ºC; T10 = 459 ºC). Nanocomposite foams have also shown excellent flame retardancy as V-0 rating and high char yield of up to 57% were attained. Due to hydrophilic nature of functional carbon nanoparticle, water absorption capacity of 3 wt.% nanocomposite foam was 30% higher than that of pristine foam. Moreover, novel foams were also tested for the removal of toxic Pb2+ ions. PAN/PS/CNP 3 Foam has shown much higher ion removal capacity (166 mg/g) and efficiency (99 %) than that of PAN/PS foam having removal capacity and efficiency of 90 mg/g and 45 %, respectively.
Słowa kluczowe
Rocznik
Strony
5--20
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., tab.
Twórcy
autor
  • National University of Sciences and Technology, Islamabad, Pakistan
Bibliografia
  • 1. Partovi-Azar, P., Jand, S.P., Kaghazchi, P.: Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations. Physical Review Applied 9 (2018) 014012.
  • 2. Nataraj, S.K., Yang, K.S., Aminabhavi, T.M.: Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in Polymer Science 37(2012) 487-513.
  • 3. Bayramoğlu, G., Metin, A.Ü., Arıca, M.Y.: Surface modification of polyacrylonitrile film by anchoring conductive polyaniline and determination of uricase adsorption capacity and activity. Applied Surface Science 256 (2010) 6710-6716.
  • 4. Li, P., Wang, Z., Yang, L., Zhao, S., Song, P., Khan, B.: A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. Journal of Membrane Science 555 (2018) 56-68.
  • 5. Kausar, A., Ullah, W., Muhammad, B., Siddiq, M.: Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites. Advances in Materials Science 14 (2014) 61-74.
  • 6. Tuli, S.K., Roy, A.L., Elgammal, R.A., Tian, M., Zawodzinski, T.A., Fujiwara, T.: Effect of Morphology on Anion Conductive Properties in Self-Assembled Polystyrene-Based Copolymer Membranes. Journal of Membrane Science 565 (2018) 213-225
  • 7. Karanikas, S., Economou, I.G.: Molecular simulation of structure, thermodynamic and transport properties of polyacrylonitrile, polystyrene and their alternating copolymers in high temperatures. European Polymer Journal 47 (2011) 735-745.
  • 8. Yang, Y., Daniels, E.S., Klein, A.: Synthesis of polyacrylonitrile/polystyrene latex particles that contain platinum. Journal of Applied Polymer Science 132 (2015).
  • 9. Kim, Y., Kim, S., Noh, S., Kim, S., Park, G., Le, T.H., Han, H., Kim, Y.A., Yoon, H.: Single-Walled Carbon Nanotube-Mediated Physical Gelation of Binary Polymer Blends: An Efficient Route to Versatile Porous Carbon Electrode Materials. Chemical Engineering Journal 353 (2018) 849-857
  • 10. Zhang, H., Quan, L., Shi, F., Li, C., Liu, H., Xu, L.: Rheological Behavior of Amino-Functionalized Multi-Walled Carbon Nanotube/Polyacrylonitrile Concentrated Solutions and Crystal Structure of Composite Fibers. Polymers 10 (2018) 186.
  • 11. Chen, Y., Wang, Y., Zhang, H.B., Li, X., Gui, C.X., Yu, Z.Z.: Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 82 (2015) 67-76.
  • 12. Min, Z., Yang, H., Chen, F., Kuang, T.: Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Materials Letters 230 (2018) 157-160.
  • 13. Wang, C., Xue, T., Dong, B., Wang, Z., Li, H.L.: Polystyrene–acrylonitrile–CNTs nanocomposites preparations and tribological behavior research. Wear 265 (2008) 1923-1926.
  • 14. Wu, J., An, A.K., Guo, J., Lee, E.J., Farid, M.U., Jeong, S.: 2017. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability. Chemical Engineering Journal 314 (2017) 526-536.
  • 15. Echegoyen, L., Ortiz, A., Chaur, M.N., Palkar, A.J.: Carbon Nano Onions. Chemistry of Nanocarbons (2010) 463-483.
  • 16. Bartolome, J.P., Fragoso, A.: Preparation of stable aqueous dispersions of carbon nano-onions via supramolecular crown ether-ammonium interactions with aminated biocompatible polymers. Journal of Molecular Liquids 269 (2018) 905-911.
  • 17. Kausar, A.: Carbon nano onion as versatile contender in polymer compositing and advance application. Fullerenes, Nanotubes and Carbon Nanostructures 25 (2017) 109-123.
  • 18. Peled, E., Menachem, C., Bar~Tow, D., Melman, A.: Improved Graphite Anode for Lithium~Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation. Journal of The Electrochemical Society 143 (1996) L4-L7.
  • 19. Ye, S., Vijh, A.K.: A New Fuel Cell Electrocatalyst Based on Carbonized Polyacrylonitrile Foam The Nature of Platinum~Support Interactions. Journal of the Electrochemical Society 144 (1997) 90-95.
  • 20. Wang, J., Luo, C., Qi, G., Pan, K., Cao, B.: Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats. Applied Surface Science 316 (2014) 245-250.
  • 21. Bartelmess, J., Giordani, S.: Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein Journal of Nanotechnology 5 (2014) 1980.
  • 22. Yang, Y., Daniels, E.S., Klein, A.: Synthesis of polyacrylonitrile/polystyrene latex particles that contain platinum. Journal of Applied Polymer Science 132 (2015).
  • 23. Kausar, A.: Polyurethane/Poly(2-chloro-5-methoxyaniline) and carbon nano-onion-based nanocomposite: physical properties and anti-corrosion behavior. Materials Research Innovations (2018) 1-9.
  • 24. Kausar, A.: Polyimide, polybenzimidazole-in situ-polyaniline nanoparticle and carbon nano-onionbased nanocomposite designed for corrosion protection. International Journal of Polymer Analysis and Characterization 22 (2017) 557-567.
  • 25. Kausar, A.: Effect of nanofiller dispersion on morphology, mechanical and conducting properties of electroactive shape memory Poly (urethane-urea)/functional nanodiamond composite. Advances in Materials Science 15 (2015) 14-28.
  • 26. Kausar, A.: Polycarbonate/Polypropylene-Graft-Maleic Anhydride and Nano-Zeolite-Based Nanocomposite Membrane: Mechanical and Gas Separation Performance. Advances in Materials Science 16 (2016) 17-28.
  • 27. Shen, B., Li, Y., Zhai, W., Zheng, W.: Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Applied Materials & Interfaces 8 (2016) 8050-8057.
  • 28. Kuang, T., Chang, L., Chen, F., Sheng, Y., Fu, D., Peng, X.: Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105 (2016) 305-313.
  • 29. Cai, Y., Wang, Q., Wei, Q., You, Q., Huang, F., Song, L., Hu, Y., Gao, W.: Structure, thermal, and antibacterial properties of polyacrylonitrile/ferric chloride nanocomposite fibers by electrospinning. International Journal of Polymer Analysis and Characterization 15(2010) 110-118.
  • 30. Beyli, P.T., Doğan, M., Gündüz, Z., Alkan, M. and Turhan, Y.: Synthesis, Characterization and Their Antimicrobial Activities of Boron Oxide/Poly (Acrylic Acid) Nanocomposites: Thermal and Antimicrobial Properties. Advances in Materials Science 18(2018), 28-36.
  • 31. Kausar, A.: Polyamide 1010/Polythioamide Blend Reinforced with Graphene Nanoplatelet for Automotive Part Application. Advances in Materials Science 17(2017) 24-36
  • 32. Rettenbacher, A.S., Perpall, M.W., Echegoyen, L., Hudson, J., Smith, D.W.: Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chemistry of Materials 19 (2007) 1411-1417.
  • 33. Zhao, J., Ren, W., Cheng, H.M.: Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry 22 (2012) 20197-20202.
  • 34. Landowski, M., Budzik, M., Imielińska, K.: Water absorption and blistering of glass fibre-reinforced polymer marine laminates with nanoparticle-modified coatings. Journal of Composite Materials 48 (2014), 2805-2813.
  • 35. Kizilduman, B.K., Alkan, M., Doğan, M., Turhan, Y.: Al-Pillared-Montmorillonite (AlPMt)/Poly (Methyl Methacrylate)(PMMA) Nanocomposites: The Effects of Solvent Types and Synthesis Methods. Advances in Materials Science 17 (2017) 5-23.
  • 36. Perić, J., Trgo, M. and Medvidović, N.V.: Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Research 38(2004) 1893-1899.
  • 37. Musico, Y.L.F., Santos, C.M., Dalida, M.L.P., Rodrigues, D.F.: Improved removal of lead (II) from water using a polymer-based graphene oxide nanocomposite. Journal of Materials Chemistry A 1 (2013) 3789-3796.
  • 38. Pyrzyńska, K., Bystrzejewski, M.: Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 362 (2010) 102-109.
  • 39. Zhao, X., Jia, Q., Song, N., Zhou, W., Li, Y.: Adsorption of Pb (II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and isotherms. Journal of Chemical & Engineering Data 55 (2010) 4428-4433.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d14c3bd-b428-4e57-b8aa-e279b035a441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.